Featured Research

from universities, journals, and other organizations

Excess dietary salt may drive the development of autoimmune diseases

Date:
March 6, 2013
Source:
Helmholtz Association of German Research Centres
Summary:
Increased dietary salt intake can induce a group of aggressive immune cells that are involved in triggering and sustaining autoimmune diseases. In autoimmune diseases, the immune system attacks healthy tissue instead of fighting pathogens. In autoimmune diseases, the immune system attacks healthy tissue instead of fighting pathogens.

Increased dietary salt intake can induce a group of aggressive immune cells that are involved in triggering and sustaining autoimmune diseases.

Related Articles


This conclusion is the result of a study conducted by Dr. Markus Kleinewietfeld, Prof. David Hafler (both Yale University, New Haven and the Broad Institute of the Massachusetts Institute of Technology, MIT, and Harvard University, USA), PD Dr. Ralf Linker (Dept. of Neurology, University Hospital Erlangen), Professor Jens Titze (Vanderbilt University and Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU, University of Erlangen-Nuremberg) and Professor Dominik N. Müller (Experimental and Clinical Research Center, ECRC, a joint cooperation between the Max-Delbrück Center for Molecular Medicine, MDC, Berlin, and the Charité – Universitätsmedizin Berlin and FAU) . In autoimmune diseases, the immune system attacks healthy tissue instead of fighting pathogens.

In recent decades scientists have observed a steady rise in the incidence of autoimmune diseases in the Western world. Since this increase cannot be explained solely by genetic factors, researchers hypothesize that the sharp increase in these diseases is linked to environmental factors. Among the suspected culprits are changes in lifestyle and dietary habits in developed countries, where highly processed food and fast food are often on the daily menu. These foods tend to have substantially higher salt content than home-cooked meals. This study is the first to indicate that excess salt intake may be one of the environmental factors driving the increased incidence of autoimmune diseases.

A few years ago Jens Titze showed that excess dietary salt (sodium chloride) accumulates in tissue and can affect macrophages (a type of scavenger cells) of the immune system. Independent of this study, Markus Kleinewietfeld and David Hafler observed changes in CD4 positive T helper cells (Th) in humans, which were associated with specific dietary habits. The question arose whether salt might drive these changes and thus can also have an impact on other immune cells. Helper T cells are alerted of imminent danger by the cytokines of other cells of the immune system. They activate and "help" other effector cells to fight dangerous pathogens and to clear infections. A specific subset of T helper cells produces the cytokine interleukin 17 and is therefore called Th17 for short. Evidence is mounting that Th17 cells, apart from fighting infections, play a pivotal role in the pathogenesis of autoimmune diseases.

Salt dramatically boosts the induction of aggressive Th17 immune cells

In cell culture experiments the researchers showed that increased sodium chloride can lead to a dramatic induction of Th17 cells in a specific cytokine milieu. "In the presence of elevated salt concentrations this increase can be ten times higher than under usual conditions," Markus Kleinewietfeld and Dominik Müller explained. Under the new high salt conditions, the cells undergo further changes in their cytokine profile, resulting in particularly aggressive Th17 cells.

In mice, increased dietary salt intake resulted in a more severe form of experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Multiple sclerosis is an autoimmune disease of the central nervous system in which the body's own immune system destroys the insulating myelin sheath around the axons of neurons and thus prevents the transduction of signals, which can lead to a variety of neurological deficits and permanent disability. Recently, researchers postulated that autoreactive Th17 cells play a pivotal role in the pathogenesis of multiple sclerosis.

Interestingly, according to the researchers, the number of pro-inflammatory Th17 cells in the nervous system of the mice increased dramatically under a high salt diet. The researchers showed that the high salt diet accelerated the development of helper T cells into pathogenic Th17 cells. The researchers also conducted a closer examination of these effects in cell culture experiments and showed that the increased induction of aggressive Th17 cells is regulated by salt on the molecular level. "These findings are an important contribution to the understanding of multiple sclerosis and may offer new targets for a better treatment of the disease, for which at present there is no known cure," said Ralf Linker, who as head of the Neuroimmunology Section and Attending Physician at the Department of Neurology, University Hospital Erlangen, seeks to utilize new laboratory findings for the benefit of patients.

Besides multiple sclerosis, Dominik Müller and his colleagues want to study psoriasis, another autoimmune disease with strong Th17 components. The skin, as Jens Titze recently discovered, also plays a key role in salt storage and affects the immune system. "It would be interesting to find out if patients with psoriasis can alleviate their symptoms by reducing their salt intake," the researchers said. "However, the development of autoimmune diseases is a very complex process which depends on many genetic and environmental factors," the immunologist Markus Kleinewietfeld said. "Therefore, only further studies under less extreme conditions can show the extent to which increased salt intake actually contributes to the development of autoimmune diseases."


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Markus Kleinewietfeld, Arndt Manzel, Jens Titze, Heda Kvakan, Nir Yosef, Ralf A. Linker, Dominik N. Muller, David A. Hafler. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature, 2013; DOI: 10.1038/nature11868

Cite This Page:

Helmholtz Association of German Research Centres. "Excess dietary salt may drive the development of autoimmune diseases." ScienceDaily. ScienceDaily, 6 March 2013. <www.sciencedaily.com/releases/2013/03/130306134358.htm>.
Helmholtz Association of German Research Centres. (2013, March 6). Excess dietary salt may drive the development of autoimmune diseases. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2013/03/130306134358.htm
Helmholtz Association of German Research Centres. "Excess dietary salt may drive the development of autoimmune diseases." ScienceDaily. www.sciencedaily.com/releases/2013/03/130306134358.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) — Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Circuitry of Cells Involved in Immunity, Autoimmune Diseases Exposed: Connections Point to Interplay Between Salt and Genetic Factors

Mar. 6, 2013 — New work expands the understanding of how Th17 cells develop, and how their growth influences the development of immune responses. By figuring out how these cells are "wired," the ... read more

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins