Featured Research

from universities, journals, and other organizations

Signal processing: Look-up tables to shoulder the processing load

Date:
March 13, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Computing tasks for signal processing could be performed more quickly with less power by using look-up tables.

Advanced mathematical algorithms are essential for processing electronic signals within computers and embedded processors. Scientists and engineers are constantly refining and redesigning their algorithms to obtain higher throughput of information on ever smaller devices that consume less power.

Now, Pramod Kumar Meher of the A*STAR Institute for Infocomm Research in Singapore and co-workers at Central South University in Changsha, China, have developed an efficient new method to implement an important step in signal processing, called the discrete cosine transform (DCT). Their method could lead to devices that occupy smaller areas, provide higher throughput of information, and consume less power than existing devices.

The DCT is commonly used for the compression of digital video and audio such as MPEG files. Similar to the better-known Fourier transform, the DCT involves expressing a series of data points as a sum of their product with cosine functions.

Several algorithms and software architectures already exist for computing so-called 'power-of-two-length DCTs'. But, those DCTs are not suitable for all applications. The prime-length DCT is an alternative to the power-of-two-length DCT that has the potential to be more efficient for implementation in hardware, Meher notes.

Meher and his co-workers have focused on computing the DCT of different lengths of practical interest using specialized digital circuits that occupy less area on a silicon chip and use less power, but run at adequate speed. They not only derived a more efficient algorithm for DCT, but also derived new architecture -- based on the 'distributed arithmetic' approach -- for implementing the algorithm in integrated circuit chips.

Meher and co-workers made use of a theorem that inter-relates the transforms with cyclic convolution of two finite duration sequences. By using look-up tables, this convolution, and thereafter the prime-length DCT, could be performed quickly and accurately.

The team also described a new, efficient algorithm for decomposing the DCT -- in mathematics, this means rewriting the problem in terms of a combination of simpler quantities. In addition to reducing the required size of read-only memory (ROM), the researchers found that overall their algorithm significantly reduced the computation time.

"We found that the proposed design involves significantly less area and it yields higher throughput with less power consumption than the corresponding existing designs," says Meher. "The structure we propose is highly regular, modular and therefore suitable for Very Large Scale Integration realization."


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Jiafeng Xie, Pramod Kumar Meher, Jianjun He. Hardware-Efficient Realization of Prime-Length DCT Based on Distributed Arithmetic. IEEE Transactions on Computers, 2012; DOI: 10.1109/TC.2012.64

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Signal processing: Look-up tables to shoulder the processing load." ScienceDaily. ScienceDaily, 13 March 2013. <www.sciencedaily.com/releases/2013/03/130313111658.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, March 13). Signal processing: Look-up tables to shoulder the processing load. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/03/130313111658.htm
The Agency for Science, Technology and Research (A*STAR). "Signal processing: Look-up tables to shoulder the processing load." ScienceDaily. www.sciencedaily.com/releases/2013/03/130313111658.htm (accessed September 30, 2014).

Share This



More Computers & Math News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Apple Releases 'Shellshock' Fix Despite Few Affected Users

Apple Releases 'Shellshock' Fix Despite Few Affected Users

Newsy (Sep. 29, 2014) Apple released a security fix for the "Shellshock" vulnerability Monday, though it says only "advanced UNIX users" of OS X need it. Video provided by Newsy
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
New Facebook Ad Platform Goes Where You Go On The Web

New Facebook Ad Platform Goes Where You Go On The Web

Newsy (Sep. 29, 2014) Called Atlas, the platform allows advertisers to place ads based on Facebook info on sites outside of Facebook. Video provided by Newsy
Powered by NewsLook.com
Google Tightens Requirements For Android Manufacturers

Google Tightens Requirements For Android Manufacturers

Newsy (Sep. 27, 2014) Phonemakers who want to use Google’s software in their devices will have to stick to more stringent requirements. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins