Featured Research

from universities, journals, and other organizations

Electrons behaving like a particle and a wave: Feynman's double-slit experiment brought to life

Date:
March 14, 2013
Source:
Institute of Physics
Summary:
The precise methodology of Richard Feynman's famous double-slit thought-experiment -- a cornerstone of quantum mechanics that showed how electrons behave as both a particle and a wave -- has been followed in full for the very first time.

Artist's abstraction.
Credit: © mozZz / Fotolia

The precise methodology of Richard Feynman's famous double-slit thought-experiment -- a cornerstone of quantum mechanics that showed how electrons behave as both a particle and a wave -- has been followed in full for the very first time.

Although the particle-wave duality of electrons has been demonstrated in a number of different ways since Feynman popularised the idea in 1965, none of the experiments have managed to fully replicate the methodology set out in Volume 3 of Feynman's famous Lectures on Physics.

"The technology to do this experiment has been around for about two decades; however, to do a nice data recording of electrons takes some serious effort and has taken us three years," said lead author of the study Professor Herman Batelaan from the University of Nebraska-Lincoln.

"Previous double-slit experiments have successfully demonstrated the mysterious properties of electrons, but none have done so using Feynman's methodology, specifically the opening and closing of both slits at will and the ability to detect electrons one at a time.

"Akira Tonomura's brilliant experiment used a thin, charged wire to split electrons and bring them back together again, instead of two slits in a wall which was proposed by Feynman. To the best of my knowledge, the experiments by Guilio Pozzi were the first to use nano-fabricated slits in a wall; however, the slits were covered up by stuffing them with material so could not be open and closed automatically."

In their experiments, which have been published 14 March, in the Institute of Physics and German Physical Society's New Journal of Physics, Batelaan and his team, along with colleagues at the Perimeter Institute of Theoretical Physics, created a modern representation of Feynman's experiment by directing an electron beam, capable of firing individual electrons, at a wall made of a gold-coated silicon membrane.

The wall had two 62-nm-wide slits in it with a centre-to-centre separation of 272 nm. A 4.5 ΅m wide and 10 ΅m tall moveable mask, controlled by a piezoelectric actuator, was placed behind the wall and slid back and forth to cover the slits.

"We've created an experiment where both slits can be mechanically opened and closed at will and, most importantly, combined this with the capability of detecting one electron at a time.

"It is our task to turn every stone when it comes to the most fundamental experiments that one can do. We have done exactly that with Feynman's famous thought-experiment and have been able to illustrate the key feature of quantum mechanics," continued Batelaan.

Feynman's double-slit experiment

In Feynman's double-slit thought-experiment, a specific material is randomly directed at a wall which has two small slits that can be opened and closed at will -- some of the material gets blocked and some passes through the slits, depending on which ones are open.

Based on the pattern that is detected beyond the wall on a backstop -- which is fitted with a detector -- one can discern whether the material coming through behaves as either a wave or particle.

When particles are fired at the wall with both slits open, they are more likely to hit the backstop in one particular area, whereas waves interfere with each other and hit the backstop at a number of different points with differing strength, creating what is known as an interference pattern.

In 1965, Feynman popularised that electrons -- historically thought to be particles -- would actually produce the pattern of a wave in the double-split experiment.

Unlike sound waves and water waves, Feynman highlighted that when electrons are fired at the wall one at a time, an interference pattern is still produced. He went on to say that this phenomenon "has in it the heart of quantum physics [but] in reality, it contains the only mystery."


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Roger Bach, Damian Pope, Sy-Hwang Liou, Herman Batelaan. Controlled double-slit electron diffraction. New Journal of Physics, 2013; 15 (3): 033018 DOI: 10.1088/1367-2630/15/3/033018

Cite This Page:

Institute of Physics. "Electrons behaving like a particle and a wave: Feynman's double-slit experiment brought to life." ScienceDaily. ScienceDaily, 14 March 2013. <www.sciencedaily.com/releases/2013/03/130313214031.htm>.
Institute of Physics. (2013, March 14). Electrons behaving like a particle and a wave: Feynman's double-slit experiment brought to life. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2013/03/130313214031.htm
Institute of Physics. "Electrons behaving like a particle and a wave: Feynman's double-slit experiment brought to life." ScienceDaily. www.sciencedaily.com/releases/2013/03/130313214031.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) — The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) — Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins