Featured Research

from universities, journals, and other organizations

Microscale medical sensors inserted under skin powered wirelessly by external handheld receiver

Date:
March 27, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Implantable electronic devices potentially offer a rapid and accurate way for doctors to monitor patients with particular medical conditions. Yet powering such devices remains a fundamental challenge: batteries are bulky and eventually need recharging or replacing. Scientists are now developing an alternative approach that eliminates the need for a battery. Their miniature devices are based on wireless power-transfer technology.

A handheld reader (top right) wirelessly powers and interrogates a tiny blood-pressure sensor embedded inside a prosthetic graft, inserted in this case as a conduit for haemodialysis in a patient with kidney failure.
Credit: Copyright 2013 A*STAR Institute of Microelectronics

Implantable electronic devices potentially offer a rapid and accurate way for doctors to monitor patients with particular medical conditions. Yet powering such devices remains a fundamental challenge: batteries are bulky and eventually need recharging or replacing. Jia Hao Cheong at the A*STAR Institute for Microelectronics, Singapore, and his co-workers are developing an alternative approach that eliminates the need for a battery. Their miniature devices are based on wireless power-transfer technology.

The research team has developed a microscale electronic sensor to monitor blood flow through artificial blood vessels. Surgeons use these prosthetic grafts to bypass diseased or clogged blood vessels in patients experiencing restricted blood supply, for example. Over time, however, the graft can also become blocked. To avoid complete failure, blood flow through the graft must be monitored regularly, but existing techniques are slow and costly.

These limitations prompted the researchers to develop a bench-top prototype of a device that could be incorporated inside a graft to monitor blood flow. The implant is powered by a handheld external reader, which uses inductive coupling to wirelessly transfer energy, a technology similar to that found in the latest wireless-charging mobile phones. The team developed an application-specific, integrated circuit for the implant designed for low power use (see image).

The incoming energy powers circuits in the device that control sensors based on silicon nanowires. This material is piezoresistive: as blood flows over the sensor the associated mechanical stresses induce a measurable increase in electrical resistance, proportional to the flow pressure.

Key to the success of the device is its ability to work with a very limited power supply. Most of the incoming energy is absorbed by skin and tissue before it can reach the implant, which may be inserted up to 50 millimeters deep.

"Our flow sensor system achieves an ultra-low power consumption of 12.6 microwatts," Cheong says. For example, the sensor transmits its data to the handheld reader passively, by backscattering some of the incoming energy. "We have tested our system with 50-millimeter-thick tissue between the external coil and implantable coil, and it successfully extracted the pressure data from the implantable device," he adds.

Cheong and his co-workers' tests showed that the prototype sensor was also highly pressure sensitive, providing pressure readings with a resolution of 0.17 pounds per square inch (1,172 pascals). "The next step of the project is to integrate the system and embed it inside a graft for [an experimental] animal," Cheong says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Jia Hao Cheong, Simon Sheung Yan Ng, Xin Liu, Rui-Feng Xue, Huey Jen Lim, Pradeep Basappa Khannur, Kok Lim Chan, Andreas Astuti Lee, Kai Kang, Li Shiah Lim, Cairan He, Pushpapraj Singh, Woo-Tae Park, Minkyu Je. An Inductively Powered Implantable Blood Flow Sensor Microsystem for Vascular Grafts. IEEE Transactions on Biomedical Engineering, 2012; 59 (9): 2466 DOI: 10.1109/TBME.2012.2203131

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Microscale medical sensors inserted under skin powered wirelessly by external handheld receiver." ScienceDaily. ScienceDaily, 27 March 2013. <www.sciencedaily.com/releases/2013/03/130327162425.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, March 27). Microscale medical sensors inserted under skin powered wirelessly by external handheld receiver. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/03/130327162425.htm
The Agency for Science, Technology and Research (A*STAR). "Microscale medical sensors inserted under skin powered wirelessly by external handheld receiver." ScienceDaily. www.sciencedaily.com/releases/2013/03/130327162425.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Thousands Who Can't Afford Medical Care Flock to Free US Clinic

Thousands Who Can't Afford Medical Care Flock to Free US Clinic

AFP (July 23, 2014) America may be the world’s richest country, but in terms of healthcare, the World Health Organisation ranks it 37th. Thousands turned out for a free clinic run by "Remote Area Medical" with a visit from the Governor of Virginia. Duration: 2:40 Video provided by AFP
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins