Featured Research

from universities, journals, and other organizations

Dead star warps light of companion red star, astronomers say

Date:
April 5, 2013
Source:
Cornell University
Summary:
Astronomers have observed the effects of a dead star bending the light of its companion red star. The findings are among the first detections of this effect -- a result predicted by Einstein's theory of general relativity -- in binary, or double, star systems.

An artist's concept depicts a dense, dead star called a white dwarf crossing in front of a small, red star. The white dwarf's gravity is so great that it bends and magnifies light from the red star, causing it to appear bigger than it really is.
Credit: NASA/JPL-Caltech

NASA's Kepler space telescope, in concert with Cornell-led measurements of stars' ultraviolet activity, has observed the effects of a dead star bending the light of its companion red star.

The findings are among the first detections of this effect -- a result predicted by Einstein's theory of general relativity -- in binary, or double, star systems.

The dead star, also called a white dwarf, is the burnt-out core of what used to be a star like our sun. It is locked in an orbiting dance with its partner, a small "red dwarf" star. While the tiny white dwarf is physically smaller than the red dwarf, it is more massive. When the white dwarf passed in front of its star, its gravity caused the starlight to observably bend and brighten.

"This white dwarf is about the size of Earth but the mass of the sun," said Phil Muirhead, Ph.D. '11, of the California Institute of Technology and lead author of the findings to be published April 20 in the Astrophysical Journal, titled "Characterizing the cool KOIs: A mutually eclipsing post-common envelope binary."

"It's so hefty that the red dwarf, though larger in physical size, is circling around the white dwarf," Muirhead continued.

The research team used Cornell-led ultraviolet measurements of the star called (Kepler Object of Interest) KOI-256 taken by the Galaxy Evolution Explorer (GALEX), a NASA space telescope operated by Caltech. The GALEX observations were conducted by Cornell researchers Jamie Lloyd, associate professor of astronomy and of mechanical and aerospace engineering; Kevin Covey, former postdoctoral associate now at Lowell Observatory; and Lucianne Walkowicz of Princeton University and Evgenya Shkolnik of Lowell Observatory.

Still in early phases and for which Cornell students are now being recruited by Lloyd, the GALEX program measures ultraviolet activity in all the stars in the Kepler field of view -- an indicator of potential habitability for planets.

Graduate student and co-author Jim Fuller also did a theoretical analysis of the star system in the context of its future and past evolutions.

The red dwarf orbits the white dwarf in just 1.4 days. This orbital period is so short that the stars must have previously undergone a "common-envelope" phase in which the red dwarf orbited within the outer layers of the star that formed the white dwarf, Fuller explained.

Moreover, the short orbital period means the red dwarf's days are numbered: In a few billion years, the intense gravity of the white dwarf will strip material off the red dwarf, forming a hot accretion disk of in-falling material around the white dwarf.

"This system is especially exciting because it allows us to accurately characterize the peaceful state of these systems before the violent mass-transfer phase begins," Fuller said.

Kepler's primary job is to scan stars in search of orbiting planets. As the planets pass by, they block the starlight by miniscule amounts, which Kepler's sensitive detectors can see.

So far, Kepler has identified more than 2,700 planet candidates. Still ongoing is the mission's search for planets similar to Earth in size and temperature that orbit a star like our sun. Ultimately, Kepler will reveal how common Earth-size planets are in the Milky Way galaxy.

To learn more about this particular star system, Muirhead and colleagues also used the Hale Telescope at Palomar Observatory near San Diego. Using a technique called radial velocity, they discovered that the red dwarf was wobbling around like a spinning top. The wobble was too big to be from the tug of a planet. That's when they knew they were looking at a massive white dwarf passing behind the red dwarf, rather than a gas giant passing in front.

One of the consequences of Einstein's theory of general relativity is that gravity bends light. Astronomers regularly observe this phenomenon, often called gravitational lensing, which has been used to discover new planets and hunt for free-floating planets.

In this new study, scientists used gravitational lensing to determine the mass of the white dwarf. By combining this information with all the data they acquired, they were able to accurately measure the mass of the red dwarf and the physical sizes of both stars.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Philip S. Muirhead, Andrew Vanderburg, Avi Shporer, Juliette Becker, Jonathan J. Swift, James P. Lloyd, Jim Fuller, Ming Zhao, Sasha Hinkley, J. Sebastian Pineda, Michael Bottom, Andrew W. Howard, Kaspar von Braun, Tabetha S. Boyajian, Nicholas Law, Christoph Baranec, Reed Riddle, A. N. Ramaprakash, Shriharsh P. Tendulkar, Khanh Bui, Mahesh Burse, Pravin Chordia, Hillol Das, Richard Dekany, Sujit Punnadi, John Asher Johnson. CHARACTERIZING THE COOL KOIs. V. KOI-256: A MUTUALLY ECLIPSING POST-COMMON ENVELOPE BINARY. The Astrophysical Journal, 2013; 767 (2): 111 DOI: 10.1088/0004-637X/767/2/111

Cite This Page:

Cornell University. "Dead star warps light of companion red star, astronomers say." ScienceDaily. ScienceDaily, 5 April 2013. <www.sciencedaily.com/releases/2013/04/130405094732.htm>.
Cornell University. (2013, April 5). Dead star warps light of companion red star, astronomers say. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2013/04/130405094732.htm
Cornell University. "Dead star warps light of companion red star, astronomers say." ScienceDaily. www.sciencedaily.com/releases/2013/04/130405094732.htm (accessed April 21, 2014).

Share This



More Space & Time News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Easter Morning Delivery for Space Station

Raw: Easter Morning Delivery for Space Station

AP (Apr. 20, 2014) Space station astronauts got a special Easter treat: a cargo ship full of supplies. The SpaceX company's cargo ship, Dragon, spent two days chasing the International Space Station following its launch from Cape Canaveral. (April 20) Video provided by AP
Powered by NewsLook.com
Extremely Large Telescope Could Spot Alien Life

Extremely Large Telescope Could Spot Alien Life

Newsy (Apr. 20, 2014) Scientists are preparing to blow up a Chilean mountain to construct the Extremely Large Telescope, which will take detailed pictures of exoplanets. Video provided by Newsy
Powered by NewsLook.com
A Hoax? Cosmetics Company Wants To Brighten The Moon

A Hoax? Cosmetics Company Wants To Brighten The Moon

Newsy (Apr. 19, 2014) FOREO, a Swedish cosmetics company, says it wants to brighten the moon to lower electricity costs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins