Featured Research

from universities, journals, and other organizations

Flies reveal kidney stones in-the-making

Date:
April 7, 2013
Source:
Genetics Society of America
Summary:
Kidney stones usually make their presence known suddenly, often sending a person to the hospital in excruciating pain. New research identifies an important role zinc plays in the disease process.

Kidney stones usually make their presence known suddenly, often sending a person to the hospital in excruciating pain. Each year in the U.S. more than a million people seek medical attention for kidney stones, technically called nephrolithiasis. The total annual cost of treatment exceeds $2.1 billion, according to the National Kidney and Urologic Diseases Information Clearinghouse.

Related Articles


Although kidney stone pain may seem to come out of nowhere, the hard collections of minerals that block kidney tubules and ureters originate and grow over weeks or months. Learning more about how they form can suggest ways to detect them at earlier stages, prevent recurrence following lithotripsy (shock waves that break up the stone) or surgery, and possibly prevent them altogether if susceptible individuals can be identified.

Experiments using the fruit fly Drosophila melanogaster not only provide a glimpse of kidney stone formation over a fly's short lifetime, but have identified an important role zinc plays in the disease process in flies and in people. Thomas Chi, MD, Clinical Instructor and Endourology and Laparoscopy Fellow in the Department of Urology at the University of California, San Francisco, will discuss these experiments today at the Genetics Society of America's 54th Annual Drosophila Research Conference in Washington D.C., April 3-7, 2013.

"There's been little to no change in medical treatment for urinary stones in the last 20 years. While surgical (which includes lithotripsy) treatments have advanced at a rapid pace, our ability to prevent kidney stones or their recurrence is extremely limited," said Dr. Chi.

In flies genetically predisposed to develop stones, researchers can track the origins of the condition, and can also screen drugs, medical therapies, and other genes that counter stone formation. The insects develop pebble-like masses of phosphorus and calcium that look like tiny human kidney stones. The growths lodge in the fly's Malpighian tubule, which is the equivalent of the convoluted tubules in the million or so microscopic nephrons that make up a human kidney.

Kidney stone formation is an example of "ectopic calcification," in which calcium hydroxyapatite, a normal constituent of bones and teeth, forms elsewhere. Understanding how kidney stones form may also shed light on other sites of ectopic calcification, such as the coronary arteries.

In many animal models of kidney stones, researchers feed toxins such as antifreeze -- ethylene glycol -- to induce the condition. Obviously, this is not how the human condition begins. However, fruit flies with a mutation in the gene that encodes the enzyme xanthine dehydrogenase develop kidney stones that are remarkably like their human counterparts, rich in calcium hydroxyapatite.

Dr. Chi and his colleagues used the fly model to look for genes which, when silenced, prevent or ameliorate kidney stones. The researchers scrutinized over 80 genes, based on known functions, and narrowed them down to fewer than 10 that are involved with formation of kidney stones. Genes related to zinc transport in particular seemed to play a major role, demonstrating the importance of the element in stone formation.

The researchers developed a visually striking method to watch fly kidney stones form. They labeled calcium hydroxyapatite with fluorescent bisphosphonate, an osteoporosis drug. The technique reveals tiny green glowing balls that are the seeds of kidney stones.

Dr. Chi calls the beginnings of the stones "calcified nanoparticles" and puts their size into perspective. "If you had a rope from Hong Kong to San Francisco, to find a calcified nanoparticle, you'd be looking for a 5 to 10 foot segment on that rope." The nanoparticles in the fly may be an early equivalent of precursor lesions in people called Randall plaques, he added.

Zinc transport is important to nanoparticle formation. "Zinc is present throughout the body, and is very important for a number of physiologic processes. We are NOT saying that making the whole body zinc deficient could be an effective approach to treating kidney stones. But if we could somehow control the microenvironmental zinc levels at the key stage in stone development, that approach might offer us an effective new therapy," Dr. Chi explained.

The researchers hope that their findings will lead to new options for kidney stones. "If we can get to them before they form, we'd cut way back on the number of people needing surgery every year, which is our goal," Dr. Chi said.


Story Source:

The above story is based on materials provided by Genetics Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Genetics Society of America. "Flies reveal kidney stones in-the-making." ScienceDaily. ScienceDaily, 7 April 2013. <www.sciencedaily.com/releases/2013/04/130407090734.htm>.
Genetics Society of America. (2013, April 7). Flies reveal kidney stones in-the-making. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2013/04/130407090734.htm
Genetics Society of America. "Flies reveal kidney stones in-the-making." ScienceDaily. www.sciencedaily.com/releases/2013/04/130407090734.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins