Featured Research

from universities, journals, and other organizations

New 'transient electronics' disappear when no longer needed

Date:
April 8, 2013
Source:
American Chemical Society (ACS)
Summary:
Scientists have described key advances toward practical uses of a new genre of tiny, biocompatible electronic devices that could be implanted into the body to relieve pain or battle infection for a specific period of time, and then dissolve harmlessly.

“Transient” electronics can last for minutes, hours, days or weeks in water, then completely disappear.
Credit: Beckman Institute, University of Illinois and Tufts University

Scientists have described key advances toward practical uses of a new genre of tiny, biocompatible electronic devices that could be implanted into the body to relieve pain or battle infection for a specific period of time, and then dissolve harmlessly.

These "transient electronics," described in New Orleans on April 8 at the 245th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, could have other uses, including consumer electronics products with a pre-engineered service life.

John Rogers, Ph.D., who led the research, explained that it arises from a view of electronics fundamentally different from the mindset that has prevailed since the era of electronic "chips," integrated circuits and microprocessors, which dawned almost 50 years ago.

"The goal of the electronics industry has always been to build durable devices that last forever with stable performance," Rogers explained. "But many new opportunities open up once you start thinking about electronics that could disappear in a controlled and programmable way."

Those opportunities, he added, include cell phones and other mobile devices that stop working on a timetable corresponding to the time for upgrading to a new model. Instead of adding to the $50 million of so-called e-waste generated every year, the devices would simply break down. Medical implants that are only needed for a few weeks could just disappear, without requiring an extra surgery to remove them from the body. And no one would have to retrieve dozens of transient water-quality sensors from a river undergoing water quality monitoring. They would dissolve without a trace and without harm to the environment.

Although other researchers have developed so-called bioresorbable medical devices that disappear over time in the body, Rogers' team at the University of Illinois at Urbana-Champaign is the first to produce such broadly applicable technology, which has many more potential uses than other devices. The scientists have designed transient electronics as temperature sensors, solar cells and miniature digital cameras, for instance. Moreover, previous bioresorbable devices were made of different materials that only partially dissolved, leaving behind residues, and they did not perform as well as Rogers' current devices.

The electronics are enclosed in material that dissolves completely after a certain period of time when exposed to water or body fluids, somewhat like dissolvable sutures. By altering the number of layers of the wrapping, scientists can define everything about how the device will dissolve in the body or in the environment, including its overall lifetime, said Rogers. The devices perform just as well as conventional electronics and function normally until the encapsulating layer disappears. Once that happens, it takes about 30 minutes for the electronic connections to dissolve away, and the device stops working. Current versions of the devices remain operable for a few weeks. Rogers' team is researching ways to make devices that last a few years.

In his ACS report, Rogers described key advances in the technology. One advance established for the first time that transient electronic devices, implanted into laboratory mice, actually work in battling infections and do, indeed, dissolve when done. Rogers' team previously only thought that would happen. The devices produced localized heat, which prevented bacterial growth and surgery-related infections from developing in the mice. The findings add to the confidence that similar devices can be designed to reduce pain by stimulating certain nerves or facilitate bone growth or wound healing.

The scientists also reported progress in making the devices with conventional manufacturing processes instead of meticulously building the electronics one-by-one by hand in a laboratory. "It's a step toward producing these devices with the kind of manufacturing processes that are already in wide use for traditional electronics like silicon-based microprocessors and memory technology," said Rogers.

Another advance involved the materials for making and powering the devices without an external electricity source. Rogers said, for instance, that the latest transient electronic devices incorporate zinc oxide, which is "piezoelectric." It means that thin, flexible devices made with zinc oxide could produce electricity when bent or twisted -- perhaps by movement of muscles in the body, pulsation of blood vessels or beating of the heart.


Story Source:

The above story is based on materials provided by American Chemical Society (ACS). Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society (ACS). "New 'transient electronics' disappear when no longer needed." ScienceDaily. ScienceDaily, 8 April 2013. <www.sciencedaily.com/releases/2013/04/130408122310.htm>.
American Chemical Society (ACS). (2013, April 8). New 'transient electronics' disappear when no longer needed. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/04/130408122310.htm
American Chemical Society (ACS). "New 'transient electronics' disappear when no longer needed." ScienceDaily. www.sciencedaily.com/releases/2013/04/130408122310.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins