Featured Research

from universities, journals, and other organizations

Electronic implants: New fast transcutaneous non-invasive battery recharger and energy feeder

Date:
April 9, 2013
Source:
MIT Portugal Program
Summary:
Scientists have developed a non-invasive battery recharger system for electronic implants that allows a longer life for the internal implantable devices in the human body such as pacemakers, defibrillators and electric hearts.

António Abreu, a Sustainable Energy Systems PhD Student under the MIT Portugal Program, currently developing research work at LNEG (Laboratório Nacional de Energia e Geologia I.P.) has developed a non-invasive battery recharger system for electronic implants that allows a longer life for the internal implantable devices in the human body such as, pacemakers, defibrillators, electric heart, delaying considerable the usual customary surgery intervention for replacement.

According to the world health organization, cardiovascular diseases are the leading cause of deaths. On a last resource, patients with cardiovascular disease have to be aided through surgery and medical devices to help them perform the basic functions. Nevertheless medical devices, such as pacemaker that sends electrical impulses to the heart muscle to maintain a suitable heart rate and rhythm, need a source of energy and once the battery has run out they required a surgical procedure similar to the initial implantation to replace the device.

With the non-invasive battery recharger for electronic cardiac implants the need for a new surgical intervention is reduced, since it primes from being rechargeable, i.e. the patient will not need to be operated upon to change batteries every five to seven years, since these are rechargeable by irradiant electricity passing through the body. António Abreu adds that "The non-invasive battery also allows for a customize energy consumption of the cardiac implants, therefore the consumption of energy can be regulated to adapted to its function and patients' pathology and activity. It guarantees the energetic supply of a communication channel between the exterior for diagnosis and/or implant reprogramming. In this case, there will be no demand of energy from the internal battery."

The principle of the operation is the use of a high efficient Transcutaneous Power System. However, these typical systems use electronic converters witch generate hazard electromagnetic interferences (EMI) that causes damage to the implants as to the patients. The present innovation takes into account the Energy Efficiency in electric transmission systems without ferromagnetic cores, regarding medical application. In practice it eliminates the Gibbs phenomena.

The invention optimizes the energy flow determined by the regime of exploration previewed at the innovative Predictor-Corrector Abacus conception.

The Predictor-Corrector Abacus is a representation in the complex plan of a situation where a specific load is supplied by an electrical energy to the Active Power P, and Reactive Power Q. What characterizes this Abacus is the circumstance of considering the effect of the reactance and the resistance of longitudinal transmission lines that is evident at the figure by the position of the angles of segments lines that proliferate in the first and second quadrants of the Argand's complex plan. The best position of the segments lines defines the maximum of power transference without electromagnetic interferences.

The Prototype, patented by António Abreu in the USA and in Europe with the collaboration and support of the PRIME (Incentive Program for the Modernization of the Economy) program and approved by the European Commission, was initially designed for pacemakers application but currently, and according to the medical development, new improved technics were made to be suitable for high power (and high voltages too) devices, such defibrillators, electric heart, insulin pumps or other type of implantable prosthesis.

Moreover, the same principle that allows the supply of lower energy voltages can be applied to improve the high power electrical transmission and distribution systems (electrical grid) to reduce costs due the consumer electric consumption, according to the results obtained.


Story Source:

The above story is based on materials provided by MIT Portugal Program. Note: Materials may be edited for content and length.


Cite This Page:

MIT Portugal Program. "Electronic implants: New fast transcutaneous non-invasive battery recharger and energy feeder." ScienceDaily. ScienceDaily, 9 April 2013. <www.sciencedaily.com/releases/2013/04/130409131804.htm>.
MIT Portugal Program. (2013, April 9). Electronic implants: New fast transcutaneous non-invasive battery recharger and energy feeder. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2013/04/130409131804.htm
MIT Portugal Program. "Electronic implants: New fast transcutaneous non-invasive battery recharger and energy feeder." ScienceDaily. www.sciencedaily.com/releases/2013/04/130409131804.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins