Featured Research

from universities, journals, and other organizations

Dark lightning: Are airplane passengers exposed to radiation from intense bursts of gamma-rays from thunderclouds?

Date:
April 10, 2013
Source:
Florida Institute of Technology
Summary:
Scientists have known for almost a decade that thunderstorms are capable of generating brief but powerful bursts of gamma-rays called terrestrial gamma-ray flashes, or TGFs. Because they can originate near the same altitudes at which commercial aircraft routinely fly, scientists have been trying to determine whether or not terrestrial gamma ray flashes present a radiation hazard to individuals in aircraft. In the middle of the storm, radiation doses could be roughly equal to a full-body CT scan, preliminary research suggests.

"What are the radiation doses to airplane passengers from the intense bursts of gamma-rays that originate from thunderclouds?" Florida Institute of Technology Department of Physics and Space Science faculty members addressed the issue and presented their terrestrial gamma ray flashes research modeling work at a press conference meeting of the European Geosciences Union in Vienna, Austria, April 10. Joseph Dwyer, Ningyu Liu and Hamid Rassoul discussed a new physics-based model of radiation dose calculations and compared the calculations to previous work.

Scientists have known for almost a decade that thunderstorms are capable of generating brief but powerful bursts of gamma-rays called terrestrial gamma-ray flashes, or TGFs. These flashes of gamma-rays are so bright they can blind instruments many hundreds of kilometers away in outer space. Because they can originate near the same altitudes at which commercial aircraft routinely fly, scientists have been trying to determine whether or not terrestrial gamma ray flashes present a radiation hazard to individuals in aircraft.

Until recently, the work to answer that question was hampered by a poor understanding of exactly how these gamma-rays are generated by thunderstorms, with initial dose estimates ranging from not-so-safe to downright scary.

Now, scientists at Florida Tech have developed a promising physics-based model of exactly how thunderstorms manage to produce high-energy radiation.

According to their model, instead of creating normal lightning, thunderstorms can sometimes produce an exotic kind of electrical breakdown that involves high-energy electrons and their anti-matter equivalent called positrons. The interplay between the electrons and positrons causes an explosive growth in the number of these high-energy particles, emitting the observed terrestrial gamma ray flashes while rapidly discharging the thundercloud, sometimes even faster than normal lightning. Even though copious gamma-rays are emitted by this process, very little visible light is produced, creating a kind of electrical breakdown within the storms called "dark lightning."

Recent modeling work of dark lightning shows that it can explain many of the observed properties of terrestrial gamma ray flashes. The model also calculates the radiation doses received by individuals inside aircraft that happen to be in exactly the wrong place at the wrong time. Near the tops of the storms, for the types of terrestrial gamma-ray flashes that can be seen from space, the radiation doses are equivalent to about 10 chest x-rays, or about the same radiation people would receive from natural background sources over the course of a year.

"However, near the middle of the storms, the radiation dose could be about 10 times larger, comparable to some of the largest doses received during medical procedures and roughly equal to a full-body CT scan," said Dwyer. "Although airline pilots already do their best to avoid thunderstorms, occasionally aircraft do end up inside electrified storms, exposing passengers to terrestrial gamma ray flashes. On rare occasions, according to the model calculation, it may be possible that hundreds of people, without knowing it, may be simultaneously receiving a sizable dose of radiation from dark lightning."

It is not known yet how often, if ever, this actually occurs, but ongoing research is working to address this issue.


Story Source:

The above story is based on materials provided by Florida Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Florida Institute of Technology. "Dark lightning: Are airplane passengers exposed to radiation from intense bursts of gamma-rays from thunderclouds?." ScienceDaily. ScienceDaily, 10 April 2013. <www.sciencedaily.com/releases/2013/04/130410082734.htm>.
Florida Institute of Technology. (2013, April 10). Dark lightning: Are airplane passengers exposed to radiation from intense bursts of gamma-rays from thunderclouds?. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/04/130410082734.htm
Florida Institute of Technology. "Dark lightning: Are airplane passengers exposed to radiation from intense bursts of gamma-rays from thunderclouds?." ScienceDaily. www.sciencedaily.com/releases/2013/04/130410082734.htm (accessed August 23, 2014).

Share This




More Space & Time News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins