Featured Research

from universities, journals, and other organizations

Overcoming a major barrier to medical and other uses of 'microrockets' and 'micromotors'

Date:
April 10, 2013
Source:
American Chemical Society
Summary:
An advance in micromotor technology akin to the invention of cars that fuel themselves from the pavement or air is opening the door to new medical and industrial uses for these tiny devices, scientists say. Their update on development of the motors -- so small that thousands would fit inside this "o" -- was part of a recent conference presentation.

Self-propelled microrockets (left, purple) and micromotors (right, green) could someday deliver drugs, perform microsurgery or clean up oil spills.
Credit: Wei Gao and Joseph Wang, Ph.D

An advance in micromotor technology akin to the invention of cars that fuel themselves from the pavement or air, rather than gasoline or batteries, is opening the door to broad new medical and industrial uses for these tiny devices, scientists said in New Orleans on April 10. Their update on development of the motors -- so small that thousands would fit inside this "o" -- was part of the 245th National Meeting & Exposition of the American Chemical Society.

Joseph Wang, D.Sc., who leads research on the motors, said that efforts to build minute, self-powered robot devices have evoked memories of the 1966 science fiction film Fantastic Voyage. It featured a miniaturized submarine, which doctors injected into a patient. It then navigated through blood vessels to remove a blood clot in the brain.

Fuel and propulsion systems have been a major barrier in moving science fiction closer to practical reality, Wang explained. Some micromotors and even-smaller nanomotors, for instance, have relied on hydrogen peroxide fuel, which could damage body cells. Others have needed complex magnetic or electronic gear to guide their movement.

"We have developed the first self-propelled micromotors and microrockets that use the surrounding natural environment as a source of fuel," Wang said. "The stomach, for instance, has a strongly acid environment that helps digest food. Some of our microrockets use that acid as fuel, producing bubbles of hydrogen gas for thrust and propulsion. The use of biocompatible fuels is attractive for avoiding damage to healthy tissue in the body. We envision that these machines could someday perform microsurgery, clean clogged arteries or transport drugs to the right place in the body. But there are also possible uses in cleaning up oil spills, monitoring industrial processes and in national security."

Wei Gao, a graduate student in Wang's lab, described how the team at the University of California, San Diego, has developed two types of self-propelled vehicles -- microrockets made of zinc and micromotors made of aluminum. The tubular zinc micromotor is one of the world's fastest, able to move 100 times its 0.0004-inch length in just one second. That's like a sprinter running 400 miles per hour. The zinc lining is biocompatible. It reacts with the hydrochloric acid in the stomach, which consists of hydrogen and chloride ions. It releases the hydrogen gas as a stream of tiny bubbles, which propel the motor forward. "This rocket would be ideal to deliver drugs or to capture diseased cells in the stomach," said Gao.

Gao also described some of the latest advances in the technology. The newest vehicles are first-of-their-kind aluminum micromotors. One type, which also contains gallium, uses water as a fuel. It splits water to generate hydrogen bubbles, which move the motor. "About 70 percent of the human body is water, so this would be an ideal fuel for vehicles with medical uses, such as microsurgery," said Wang. "They also could have uses in clinical diagnostic tests, in the environment and in security applications."

Another type of aluminum micromotor doesn't have gallium and is the first such motor that can use multiple fuels. "We're really excited about this micromotor," said Gao. "It is our most flexible one to date. For the first time, we've made a micromotor that can use three different fuels -- acids, bases and hydrogen peroxide, depending upon its surroundings. Therefore, we can use these motors in many more environments than ever before."

The scientists are working on extending the lifetimes of the vehicles so that they last longer and functionalizing them for specific biomedical applications. They also are exploring commercial partners for realizing real-life applications of this work, said Wang.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Overcoming a major barrier to medical and other uses of 'microrockets' and 'micromotors'." ScienceDaily. ScienceDaily, 10 April 2013. <www.sciencedaily.com/releases/2013/04/130410103917.htm>.
American Chemical Society. (2013, April 10). Overcoming a major barrier to medical and other uses of 'microrockets' and 'micromotors'. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/04/130410103917.htm
American Chemical Society. "Overcoming a major barrier to medical and other uses of 'microrockets' and 'micromotors'." ScienceDaily. www.sciencedaily.com/releases/2013/04/130410103917.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins