Featured Research

from universities, journals, and other organizations

Bacterial security agents go rogue

Date:
April 14, 2013
Source:
Emory Health Sciences
Summary:
CRISPR, a system of genes that bacteria use to defend themselves against viruses, has been found to be involved in helping some bacteria evade the mammalian immune system. Scientists have shown that Francisella novicida, a close relative of the bacterium that causes tularemia, and another bacterium that causes meningitis, need parts of the CRISPR system to stay infectious.

CRISPR, a system of genes that bacteria use to defend themselves against viruses, has been found to be involved in helping some bacteria evade the mammalian immune system.

Related Articles


The results are scheduled for publication Sunday, April 14 in Nature.

CRISPR is itself a sort of immune system for bacteria. Its function was discovered by dairy industry researchers seeking to prevent phages, the viruses that infect bacteria, from ruining the cultures used to make cheese and yogurt. Bacteria incorporate small bits of DNA from phages into their CRISPR region and use that information to fight off the phages by chewing up their DNA.

Now scientists at the Division of Infectious Diseases of the Emory University School of Medicine and the Emory Vaccine Center have shown that Francisella novicida, a close relative of the bacterium that causes tularemia, and another bacterium that causes meningitis, need parts of the CRISPR system to stay infectious. F. novicida, which grows inside mammalian cells, employs parts of CRISPR to shut off a bacterial gene that would otherwise trigger detection and destruction of the bacteria by its host.

Because disabling CRISPR creates a weakened bacterial strain that is easily recognized by the immune system, the finding could accelerate vaccine development. But it is also a broader reminder that in biology, defensive tools can be co-opted for purposes of stealth.

"CRISPR systems are bacterial defenses, but we've found that bacteria can use them offensively to hide from the host immune system and cause disease," says David Weiss, PhD, assistant professor of medicine (infectious diseases) at Emory University School of Medicine and Yerkes National Primate Research Center.

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system has attracted recent attention among scientists for its potential uses in genetic engineering and biotechnology, but its roles in gene regulation and evading host immunity have remained relatively unexplored, Weiss says.

Weiss first isolated strains of F. novicida that had defects in their CRISPR systems while working as a postdoc with Denise Monack at Stanford. F. novicida infects rodents and only rarely infects humans. It is a model for studying the more dangerous F. tularensis, a potential biological weapon. Weiss was looking for F. novicida genes that are important for virulence: causing disease in a live animal.

Intriguingly, he found a DNA sequence that has recently been shown to encode a protein of the CRISPR system. What they were doing in F. novicida during infection was a puzzle.

"The mutations have a strong effect in the bacteria," Weiss says. "The wild type will kill mice, while the mutants are eradicated after a couple days. But why would the bacteria need to defend against foreign DNA to cause disease in a mouse? It didn't make sense."

The researchers discovered that the bacteria require one of the CRISPR genes to turn off production of a lipoprotein -- part of the bacterial cell membrane -- when the bacteria infect mammalian cells. For immune cells, lipoprotein is like blood in the water for a shark. A little whiff excites them. So for the bacteria to survive undetected, they have to silence lipoprotein production.

Working with Weiss, graduate student Tim Sampson -- who is first author of the Nature paper -dissected which parts of the CRISPR system were needed to turn off the lipoprotein. The CRISPR system consists of genes encoding several proteins and also incorporates small bits of DNA from phages as "repeats" into the bacterial DNA. RNA produced from the repeats guides an enzyme called Cas9 to slice up the phage DNA.

Sampson and Weiss found that part of the F. novicida CRISPR system makes an RNA that directs Cas9 against the lipoprotein gene. Weiss says the Cas9 regulatory system allows F. novicida to tune down the lipoprotein efficiently at the times when detection could be harmful, while still keeping it around for its function -- still unclear -- when the bacteria are outside the host.

"The finding that Cas9 is regulating a bacterial gene rather than slicing up a phage gene appears to be new, although there were already some hints that CRISPRs had broader functions in other bacteria," Sampson says.

To show that their results were not peculiar to F. novicida, the researchers collaborated with the laboratory of Yih-Ling Tzeng, PhD, assistant professor of medicine (infectious diseases) at Emory. They generated a strain of Neisseria meningitidis -- a cause of meningitis infections in humans -- with a deletion in Cas9. The mutated strain displayed defects in its ability to adhere to, invade and replicate in human cells. This suggests that similar functions for Cas9 and CRISPR may be found in other bacteria.

"Most of the bacteria that encode Cas9 are either pathogenic, or can commonly be found in the human body," Sampson says. "I think our findings will encourage other scientists to re-examine the functions of Cas9 and CRISPR in other bacteria, to look at interactions with the host."

For example, some Streptococcus bacteria and Listeria have similar CRISPR systems, but any potential function in causing disease in humans has not been revealed. Weiss and Sampson plan to investigate further how Cas9 functions to shut off the lipoprotein gene in F. novicida and how Cas9 becomes activated.

Sampson is a student in Emory's Microbiology and Molecular Genetics graduate program.


Story Source:

The above story is based on materials provided by Emory Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Timothy R. Sampson, Sunil D. Saroj, Anna C. Llewellyn, Yih-Ling Tzeng, David S. Weiss. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 2013; DOI: 10.1038/nature12048

Cite This Page:

Emory Health Sciences. "Bacterial security agents go rogue." ScienceDaily. ScienceDaily, 14 April 2013. <www.sciencedaily.com/releases/2013/04/130414193439.htm>.
Emory Health Sciences. (2013, April 14). Bacterial security agents go rogue. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2013/04/130414193439.htm
Emory Health Sciences. "Bacterial security agents go rogue." ScienceDaily. www.sciencedaily.com/releases/2013/04/130414193439.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins