Featured Research

from universities, journals, and other organizations

High glucose levels could impair ferroelectricity in body's connective tissues

Date:
April 15, 2013
Source:
University of Washington
Summary:
New research suggests that more sugar in the body could damage the elastic proteins that help us breathe and pump blood. The findings could have health implications for diabetics, who have high blood-glucose levels.

The blue spots in this image show where glucose has halted ferroelectric switching in an elastin protein.
Credit: Jiangyu Li, University of Washington

High sugar levels in the body come at a cost to health. New research suggests that more sugar in the body could damage the elastic proteins that help us breathe and pump blood. The findings could have health implications for diabetics, who have high blood-glucose levels.

Related Articles


Researchers at the University of Washington and Boston University have discovered that a certain type of protein found in organs that repeatedly stretch and retract -- such as the heart and lungs -- is the source for a favorable electrical property that could help build and support healthy connective tissues. But when exposed to sugar, some of the proteins no longer could perform their function, according to findings published April 15 in the journal Physical Review Letters.

The property, called ferroelectricity, is a response to an electric field in which a molecule switches from having a positive to a negative charge. Only recently discovered in animal tissues, researchers have traced this property to elastin and found that when exposed to sugar, the elastin protein sometimes slows or stops its ferroelectric switching. This could lead to the hardening of those tissues and, ultimately, degrade an artery or ligament.

"This finding is important because it tells us the origin of the ferroelectric switching phenomenon and also suggests it's not an isolated occurrence in one type of tissue as we thought," said co-corresponding author Jiangyu Li, a UW associate professor of mechanical engineering. "This could be associated with aging and diabetes, which I think gives more importance to the phenomenon."

About a year ago, Li and collaborators discovered ferroelectric switching in mammalian tissues, a surprising first for the field. Ferroelectricity is common in synthetic materials and is used for displays, memory storage and sensors. Li's research team found that the wall of a pig's aorta, the largest blood vessel carrying blood to the heart, exhibits ferroelectric switching properties.

Li said that discovery left researchers with a lot of questions, including whether this property is found in other soft tissues and the health implications of its presence. Observing differences in ferroelectric behavior at the protein level has helped to answer some of those questions.

The research team separated the aortic tissue into two types of proteins, collagen and elastin. Fibrous collagen is widespread in biological tissues, while elastin has only been found in animals with a backbone. Elastin, as its name suggests, is springy and helps the heart and lungs stretch and contract. Ferroelectric switching gives elastin the flexibility needed to perform repeated pulses as with an artery.

When researchers treated the elastin with sugar, they found that glucose suppressed ferroelectric switching by up to 50 percent. This interaction between sugar and protein mimics a natural process called glycation, in which sugar molecules attach to proteins, degrading their structure and function. Glycation happens naturally when we age and is associated with a number of diseases such as diabetes, high blood pressure and arteriosclerosis, a thickening and hardening of the arteries.

The research team has focused solely on the aortic tissues, but this finding likely applies to other biological tissues that have the protein elastin, such as the lungs and skin.

"I would expect the same phenomena will be observed in those tissues and organs as well," Li said. "It will be more common than what we originally thought."

Researchers next will drill down even more to look at the molecular mechanics of ferroelectric switching and further try to connect the process with disease onset.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Michelle Ma. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuanming Liu, Yunjie Wang, Ming-Jay Chow, Nataly Q. Chen, Feiyue Ma, Yanhang Zhang, and Jiangyu Li. Glucose suppresses biological ferroelectricity in aortic elastin. Physical Review Letters, 2013 [link]

Cite This Page:

University of Washington. "High glucose levels could impair ferroelectricity in body's connective tissues." ScienceDaily. ScienceDaily, 15 April 2013. <www.sciencedaily.com/releases/2013/04/130415100855.htm>.
University of Washington. (2013, April 15). High glucose levels could impair ferroelectricity in body's connective tissues. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2013/04/130415100855.htm
University of Washington. "High glucose levels could impair ferroelectricity in body's connective tissues." ScienceDaily. www.sciencedaily.com/releases/2013/04/130415100855.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Labour Party Warns Britain's Health Service 'on Life Support'

Labour Party Warns Britain's Health Service 'on Life Support'

AFP (Apr. 20, 2015) Britain&apos;s opposition Labour Party Monday claimed the National Health Service (NHS) was &apos;on life support&apos; as it turned its attention to the state-run service, which is a key issue for the UK&apos;s May 7 general election. Video provided by AFP
Powered by NewsLook.com
Sierra Leone Students Back to School After Long Ebola Closure

Sierra Leone Students Back to School After Long Ebola Closure

Reuters - News Video Online (Apr. 20, 2015) After an eight-month break, children in Sierra Leone return to school for the first time since the beginning of the Ebola outbreak. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Teen E-Cigarette Use Triples, Government Debates Regulations

Teen E-Cigarette Use Triples, Government Debates Regulations

Newsy (Apr. 19, 2015) The Centers for Disease Control and Prevention says in 2014, 13.4 percent of high school students reported smoking an e-cigarette within 30 days. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins