Featured Research

from universities, journals, and other organizations

Scientists transform cellulose into starch: Potential food source derived from non-food plants

Date:
April 16, 2013
Source:
Virginia Tech
Summary:
A team of researchers has succeeded in transforming cellulose into starch, a process that has the potential to provide a previously untapped nutrient source from plants not traditionally though of as food crops.

Y.H. Percival Zhang, an associate professor of biological systems engineering in the College of Agriculture and Life Sciences and the College of Engineering at Virginia Tech, led a team researchers that has succeeded in transforming cellulose into starch, a process that has the potential to provide a previously untapped nutrient source from plants not traditionally though of as food crops.
Credit: Virginia Tech

A team of Virginia Tech researchers has succeeded in transforming cellulose into starch, a process that has the potential to provide a previously untapped nutrient source from plants not traditionally though of as food crops.

Related Articles


Y.H. Percival Zhang, an associate professor of biological systems engineering in the College of Agriculture and Life Sciences and the College of Engineering, led a team of researchers in the project that could help feed a growing global population that is estimated to swell to 9 billion by 2050. Starch is one of the most important components of the human diet and provides 20-40 percent of our daily caloric intake.

The research was published this week in the Early Edition of the Proceedings of the National Academy of Sciences.

Cellulose is the supporting material in plant cell walls and is the most common carbohydrate on earth. This new development opens the door to the potential that food could be created from any plant, reducing the need for crops to be grown on valuable land that requires fertilizers, pesticides, and large amounts of water. The type of starch that Zhang's team produced is amylose, a linear resistant starch that is not broken down in the digestion process and acts as a good source of dietary fiber. It has been proven to decrease the risk of obesity and diabetes.

This discovery holds promise on many fronts beyond food systems.

"Besides serving as a food source, the starch can be used in the manufacture of edible, clear films for biodegradable food packaging," Zhang said. "It can even serve as a high-density hydrogen storage carrier that could solve problems related to hydrogen storage and distribution."

Zhang used a novel process involving cascading enzymes to transform cellulose into amylose starch.

"Cellulose and starch have the same chemical formula," Zhang said. "The difference is in their chemical linkages. Our idea is to use an enzyme cascade to break up the bonds in cellulose, enabling their reconfiguration as starch."

The new approach takes cellulose from non-food plant material, such as corn stover, converts about 30% to amylose, and hydrolyzes the remainder to glucose suitable for ethanol production. Corn stover consists of the stem, leaves, and husk of the corn plant remaining after ears of corn are harvested. However, the process works with cellulose from any plant.

This bioprocess called "simultaneous enzymatic biotransformation and microbial fermentation" is easy to scale up for commercial production. It is environmentally friendly because it does not require expensive equipment, heat, or chemical reagents, and does not generate any waste. The key enzymes immobilized on the magnetic nanoparticles can easily be recycled using a magnetic force.

Zhang designed the experiments and conceived the cellulose-to-starch concept. Zhang and Virginia Tech visiting scholar Hongge Chen are the inventors of the cellulose-to-starch biotransformation, which is covered under a provisional patent application. Chun You, a postdoctoral researcher from China at Virginia Tech, and Chen conducted most of the research work.

Support for the current research comes from the Department of Biological Systems Engineering at Virginia Tech. Additional resources were contributed by the Virginia Tech College of Agriculture and Life Sciences' Biodesign and Bioprocessing Research Center, the Shell GameChanger Program, and the U.S. Department of Energy BioEnergy Science Center, along with the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the Department of Energy. Chen was partially supported by the China Scholarship Council.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. You, H. Chen, S. Myung, N. Sathitsuksanoh, H. Ma, X.-Z. Zhang, J. Li, Y.- H. P. Zhang. Enzymatic transformation of nonfood biomass to starch. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1302420110

Cite This Page:

Virginia Tech. "Scientists transform cellulose into starch: Potential food source derived from non-food plants." ScienceDaily. ScienceDaily, 16 April 2013. <www.sciencedaily.com/releases/2013/04/130416085309.htm>.
Virginia Tech. (2013, April 16). Scientists transform cellulose into starch: Potential food source derived from non-food plants. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/04/130416085309.htm
Virginia Tech. "Scientists transform cellulose into starch: Potential food source derived from non-food plants." ScienceDaily. www.sciencedaily.com/releases/2013/04/130416085309.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins