Science News

... from universities, journals, and other research organizations

New Matter-Antimatter Difference Observed in LHCb Experiment at CERN

Apr. 24, 2013 — The LHCb collaboration at CERN today submitted a paper to Physical Review Letters on the first observation of matter-antimatter asymmetry in the decays of the particle known as the B0s. It is only the fourth subatomic particle known to exhibit such behaviour.


Share This:

Matter and antimatter are thought to have existed in equal amounts at the beginning of the universe, but today the universe appears to be composed essentially of matter. By studying subtle differences in the behaviour of particle and antiparticles, experiments at the LHC are seeking to cast light on this dominance of matter over antimatter.

Now the LHCb experiment has observed a preference for matter over antimatter known as CP-violation in the decay of neutral B0s particles. The results are based on the analysis of data collected by the experiment in 2011. "The discovery of the asymmetric behaviour in the B0S particle comes with a significance of more than 5 sigma -- a result that was only possible thanks to the large amount of data provided by the LHC and to the LHCb detector's particle identification capabilities," says Pierluigi Campana, spokesperson of the LHCb collaboration. "Experiments elsewhere have not been in a position to accumulate a large enough number of B0s decays."

Violation of the CP symmetry was first observed at Brookhaven Laboratory in the US in the 1960s in neutral particles called kaons. About 40 years later, experiments in Japan and the US found similar behaviour in another particle, the B0 meson. More recently, experiments at the so-called B factories and the LHCb experiment at CERN have found that the B+ meson also demonstrates CP violation.

All of these CP violation phenomena can be accounted for in the Standard Model, although some interesting discrepancies demand more detailed studies. "We also know that the total effects induced by Standard Model CP violation are too small to account for the matter-dominated Universe," says Campana. "However, by studying these CP violation effects we are looking for the missing pieces of the puzzle, which provide stringent tests of the theory and are a sensitive probe for revealing the presence of physics beyond the Standard Model."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by CERN, the European Organization for Nuclear Research.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. LHCb collaboration. First observation of CP violation in the decays of Bs mesons. Physical Review Letters, 2013 (submitted); [link]
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Metal Rubber

Polymer chemists have created a flexible, indestructible material, called metal rubber, that can be heated, frozen, washed or doused with jet fuel,. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?