Featured Research

from universities, journals, and other organizations

New matter-antimatter difference observed in LHCb experiment at CERN

Date:
April 24, 2013
Source:
CERN, the European Organization for Nuclear Research
Summary:
Researchers at CERN are reporting the first observation of matter-antimatter asymmetry in the decays of the particle known as the B0s. It is only the fourth subatomic particle known to exhibit such behavior.

A view of the LHCb underground area, looking upwards from the cavern floor.
Credit: Anna Pantelia/CERN

The LHCb collaboration at CERN today submitted a paper to Physical Review Letters on the first observation of matter-antimatter asymmetry in the decays of the particle known as the B0s. It is only the fourth subatomic particle known to exhibit such behaviour.

Related Articles


Matter and antimatter are thought to have existed in equal amounts at the beginning of the universe, but today the universe appears to be composed essentially of matter. By studying subtle differences in the behaviour of particle and antiparticles, experiments at the LHC are seeking to cast light on this dominance of matter over antimatter.

Now the LHCb experiment has observed a preference for matter over antimatter known as CP-violation in the decay of neutral B0s particles. The results are based on the analysis of data collected by the experiment in 2011. "The discovery of the asymmetric behaviour in the B0S particle comes with a significance of more than 5 sigma -- a result that was only possible thanks to the large amount of data provided by the LHC and to the LHCb detector's particle identification capabilities," says Pierluigi Campana, spokesperson of the LHCb collaboration. "Experiments elsewhere have not been in a position to accumulate a large enough number of B0s decays."

Violation of the CP symmetry was first observed at Brookhaven Laboratory in the US in the 1960s in neutral particles called kaons. About 40 years later, experiments in Japan and the US found similar behaviour in another particle, the B0 meson. More recently, experiments at the so-called B factories and the LHCb experiment at CERN have found that the B+ meson also demonstrates CP violation.

All of these CP violation phenomena can be accounted for in the Standard Model, although some interesting discrepancies demand more detailed studies. "We also know that the total effects induced by Standard Model CP violation are too small to account for the matter-dominated Universe," says Campana. "However, by studying these CP violation effects we are looking for the missing pieces of the puzzle, which provide stringent tests of the theory and are a sensitive probe for revealing the presence of physics beyond the Standard Model."


Story Source:

The above story is based on materials provided by CERN, the European Organization for Nuclear Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. LHCb collaboration. First observation of CP violation in the decays of Bs mesons. Physical Review Letters, 2013 (submitted); [link]

Cite This Page:

CERN, the European Organization for Nuclear Research. "New matter-antimatter difference observed in LHCb experiment at CERN." ScienceDaily. ScienceDaily, 24 April 2013. <www.sciencedaily.com/releases/2013/04/130424094512.htm>.
CERN, the European Organization for Nuclear Research. (2013, April 24). New matter-antimatter difference observed in LHCb experiment at CERN. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/04/130424094512.htm
CERN, the European Organization for Nuclear Research. "New matter-antimatter difference observed in LHCb experiment at CERN." ScienceDaily. www.sciencedaily.com/releases/2013/04/130424094512.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins