Featured Research

from universities, journals, and other organizations

'Super-resolution' microscope possible for nanostructures

Date:
April 29, 2013
Source:
Purdue University
Summary:
Researchers have found a way to see synthetic nanostructures and molecules using a new type of super-resolution optical microscopy that does not require fluorescent dyes, representing a practical tool for biomedical and nanotechnology research.

A new type of super-resolution optical microscopy takes a high-resolution image (at right) of graphite "nanoplatelets" about 100 nanometers wide. The imaging system, called saturated transient absorption microscopy, or STAM, uses a trio of laser beams and represents a practical tool for biomedical and nanotechnology research. ()
Credit: Weldon School of Biomedical Engineering, Purdue University

Researchers have found a way to see synthetic nanostructures and molecules using a new type of super-resolution optical microscopy that does not require fluorescent dyes, representing a practical tool for biomedical and nanotechnology research.

"Super-resolution optical microscopy has opened a new window into the nanoscopic world," said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University.

Conventional optical microscopes can resolve objects no smaller than about 300 nanometers, or billionths of a meter, a restriction known as the "diffraction limit," which is defined as half the width of the wavelength of light being used to view the specimen. However, researchers want to view molecules such as proteins and lipids, as well as synthetic nanostructures like nanotubes, which are a few nanometers in diameter.

Such a capability could bring advances in a diverse range of disciplines, from medicine to nanoelectronics, Cheng said.

"The diffraction limit represents the fundamental limit of optical imaging resolution," Cheng said. "Stefan Hell at the Max Planck Institute and others have developed super-resolution imaging methods that require fluorescent labels. Here, we demonstrate a new scheme for breaking the diffraction limit in optical imaging of non-fluorescent species. Because it is label-free, the signal is directly from the object so that we can learn more about the nanostructure."

Findings are detailed in a research paper that appeared online Sunday (April 28) in the journal Nature Photonics.

The imaging system, called saturated transient absorption microscopy,or STAM,uses a trio of laser beams, including a doughnut-shaped laser beam that selectively illuminates some molecules but not others. Electrons in the atoms of illuminated molecules are kicked temporarily into a higher energy level and are said to be excited, while the others remain in their "ground state." Images are generated using a laser called a probe to compare the contrast between the excited and ground-state molecules.

The researchers demonstrated the technique, taking images of graphite "nanoplatelets" about 100 nanometers wide.

"It's a proof of concept and has great potential for the study of nanomaterials, both natural and synthetic," Cheng said.

The doughnut-shaped laser excitation technique, invented by researcher Stefan Hell, makes it possible to focus on yet smaller objects. Researchers hope to improve the imaging system to see objects about 10 nanometers in diameter, or about 30 times smaller than possible using conventional optical microscopes.

"We are not there yet, but a few schemes can be applied to further increase the resolution of our system," Cheng said.

The paper was co-authored by biomedical engineering doctoral student Pu Wang; research scientist Mikhail N. Slipchenko; mechanical engineering doctoral student James Mitchell; Chen Yang, an assistant professor of physical chemistry at Purdue; Eric O. Potma, an associate professor of chemistry at the University of California, Irvine; Xianfan Xu, Purdue's James J. and Carol L. Shuttleworth Professor of Mechanical Engineering; and Cheng.

Future research may include work to use lasers with shorter wavelengths of light. Because the wavelengths are shorter, the doughnut hole is smaller, possibly allowing researchers to focus on smaller objects.

The work will be discussed during the third annual Spectroscopic Imaging: A New Window into the Unseen World workshop on May 23 and 24 at Purdue. The workshop is hosted by the university's Weldon School of Biomedical Engineering.

The research is funded by the National Institutes of Health, National Science Foundation and the Defense Advanced Research Projects Agency.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Emil Venere. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pu Wang, Mikhail N. Slipchenko, James Mitchell, Chen Yang, Eric O. Potma, Xianfan Xu, Ji-Xin Cheng. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nature Photonics, 2013; DOI: 10.1038/nphoton.2013.97

Cite This Page:

Purdue University. "'Super-resolution' microscope possible for nanostructures." ScienceDaily. ScienceDaily, 29 April 2013. <www.sciencedaily.com/releases/2013/04/130429154221.htm>.
Purdue University. (2013, April 29). 'Super-resolution' microscope possible for nanostructures. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/04/130429154221.htm
Purdue University. "'Super-resolution' microscope possible for nanostructures." ScienceDaily. www.sciencedaily.com/releases/2013/04/130429154221.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins