Featured Research

from universities, journals, and other organizations

Exotic atoms hold clues to unsolved physics puzzle at the dawn of the universe

Date:
May 8, 2013
Source:
University of Michigan
Summary:
An international team of physicists has found the first direct evidence of pear shaped nuclei in exotic atoms. The findings could advance the search for a new fundamental force in nature that could explain why the Big Bang created more matter than antimatter -- a pivotal imbalance in the history of everything.

A graphical representation of the pear-shaped nucleus of an exotic atom. The shape of the nucleus could give clues to why the universe contains more matter than antimatter.
Credit: Liam Gaffney and Peter Butler, University of Liverpool

An international team of physicists has found the first direct evidence of pear shaped nuclei in exotic atoms.

The findings could advance the search for a new fundamental force in nature that could explain why the Big Bang created more matter than antimatter -- a pivotal imbalance in the history of everything.

"If equal amounts of matter and antimatter were created at the Big Bang, everything would have annihilated, and there would be no galaxies, stars, planets or people," said Tim Chupp, a University of Michigan professor of physics and biomedical engineering and co-author of a paper on the work published in the May 9 issue of Nature.

Antimatter particles have the same mass but opposite charge from their matter counterparts. Antimatter is rare in the known universe, flitting briefly in and out of existence in cosmic rays, solar flares and particle accelerators like CERN's Large Hadron Collider, for example. When they find each other, matter and antimatter particles mutually destruct or annihilate.

What caused the matter/antimatter imbalance is one of physics' great mysteries. It's not predicted by the Standard Model -- the overarching theory that describes the laws of nature and the nature of matter.

The Standard Model describes four fundamental forces or interactions that govern how matter behaves: Gravity attracts massive bodies to one another. The electromagnetic interaction gives rise to forces on electrically charged bodies. And the strong and weak forces operate in the cores of atoms, binding together neutrons and protons or causing those particles to decay.

Physicists have been searching for signs of a new force or interaction that might explain the matter-antimatter discrepancy. The evidence of its existence would be revealed by measuring how the axis of nuclei of the radioactive elements radon and radium line up with the spin.

The researchers confirmed that the cores of these atoms are shaped like pears, rather than the more typical spherical orange or elliptical watermelon profiles. The pear shape makes the effects of the new interaction much stronger and easier to detect.

"The pear shape is special," Chupp said. "It means the neutrons and protons, which compose the nucleus, are in slightly different places along an internal axis."

The pear-shaped nuclei are lopsided because positive protons are pushed away from the center of the nucleus by nuclear forces, which are fundamentally different from spherically symmetric forces like gravity.

"The new interaction, whose effects we are studying does two things," Chupp said. "It produces the matter/antimatter asymmetry in the early universe and it aligns the direction of the spin and the charge axis in these pear-shaped nuclei."

To determine the shape of the nuclei, the researchers produced beams of exotic -- short-lived -- radium and radon atoms at CERN's Isotope Separator facility ISOLDE. The atom beams were accelerated and smashed into targets of nickel, cadmium and tin, but due to the repulsive force between the positively charged nuclei, nuclear reactions were not possible. Instead, the nuclei were excited to higher energy levels, producing gamma rays that flew out in a specific pattern that revealed the pear shape of the nucleus.

"In the very biggest picture, we're trying to understand everything we've observed directly and also indirectly, and how it is that we happen to be here," Chupp said.

The research was led by University of Liverpool Physics Professor Peter Butler.

"Our findings contradict some nuclear theories and will help refine others," he said.

The measurements also will help direct the searches for atomic EDMs (electric dipole moments) currently being carried out in North America and Europe, where new techniques are being developed to exploit the special properties of radon and radium isotopes.

"Our expectation is that the data from our nuclear physics experiments can be combined with the results from atomic trapping experiments measuring EDMs to make the most stringent tests of the Standard Model, the best theory we have for understanding the nature of the building blocks of the universe," Butler said.

The paper is titled "Studies of nuclear pear-shapes using accelerated radioactive beams."


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. P. Gaffney, P. A. Butler, M. Scheck, A. B. Hayes, F. Wenander, M. Albers, B. Bastin, C. Bauer, A. Blazhev, S. Bφnig, N. Bree, J. Cederkδll, T. Chupp, D. Cline, T. E. Cocolios, T. Davinson, H. De Witte, J. Diriken, T. Grahn, A. Herzan, M. Huyse, D. G. Jenkins, D. T. Joss, N. Kesteloot, J. Konki, M. Kowalczyk, Th. Krφll, E. Kwan, R. Lutter, K. Moschner, P. Napiorkowski, J. Pakarinen, M. Pfeiffer, D. Radeck, P. Reiter, K. Reynders, S. V. Rigby, L. M. Robledo, M. Rudigier, S. Sambi, M. Seidlitz, B. Siebeck, T. Stora, P. Thoele, P. Van Duppen, M. J. Vermeulen, M. von Schmid, D. Voulot, N. Warr, K. Wimmer, K. Wrzosek-Lipska, C. Y. Wu, M. Zielinska. Studies of pear-shaped nuclei using accelerated radioactive beams. Nature, 2013; 497 (7448): 199 DOI: 10.1038/nature12073

Cite This Page:

University of Michigan. "Exotic atoms hold clues to unsolved physics puzzle at the dawn of the universe." ScienceDaily. ScienceDaily, 8 May 2013. <www.sciencedaily.com/releases/2013/05/130508172151.htm>.
University of Michigan. (2013, May 8). Exotic atoms hold clues to unsolved physics puzzle at the dawn of the universe. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/05/130508172151.htm
University of Michigan. "Exotic atoms hold clues to unsolved physics puzzle at the dawn of the universe." ScienceDaily. www.sciencedaily.com/releases/2013/05/130508172151.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Scientists Demonstrate Pear Shaped Atomic Nuclei

May 9, 2013 — Scientists have shown that some atomic nuclei can assume the shape of a pear which contributes to our understanding of nuclear structure and the underlying fundamental ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins