Featured Research

from universities, journals, and other organizations

Solar panels as inexpensive as paint?

Date:
May 13, 2013
Source:
University at Buffalo
Summary:
Researchers are helping develop a new generation of photovoltaic cells that produce more power and cost less to manufacture than what's available today.

Qiaoqiang Gan, University at Buffalo assistant professor of electrical engineering.
Credit: Image courtesy of University at Buffalo

Most Americans want the U.S. to place more emphasis on developing solar power, recent polls suggest. A major impediment, however, is the cost to manufacture, install and maintain solar panels. Simply put, most people and businesses cannot afford to place them on their rooftops.

Fortunately, that is changing because researchers such as Qiaoqiang Gan, University at Buffalo assistant professor of electrical engineering, are helping develop a new generation of photovoltaic cells that produce more power and cost less to manufacture than what's available today.

One of the more promising efforts, which Gan is working on, involves the use of plasmonic-enhanced organic photovoltaic materials. These devices don't match traditional solar cells in terms of energy production but they are less expensive and -- because they are made (or processed) in liquid form -- can be applied to a greater variety of surfaces.

Gan detailed the progress of plasmonic-enhanced organic photovoltaic materials in the May 7 edition of the journal Advanced Materials. Co-authors include Filbert J. Bartoli, professor of electrical and computer engineering at Lehigh University, and Zakya Kafafi of the National Science Foundation.

Currently, solar power is produced with either thick polycrystalline silicon wafers or thin-film solar cells made up of inorganic materials such as amorphous silicon or cadmium telluride. Both are expensive to manufacture, Gan said.

His research involves thin-film solar cells, too, but unlike what's on the market he is using organic materials such as polymers and small molecules that are carbon-based and less expensive.

"Compared with their inorganic counterparts, organic photovoltaics can be fabricated over large areas on rigid or flexible substrates potentially becoming as inexpensive as paint," Gan said.

The reference to paint does not include a price point but rather the idea that photovoltaic cells could one day be applied to surfaces as easily as paint is to walls, he said.

There are drawbacks to organic photovoltaic cells. They have to be thin due to their relatively poor electronic conductive properties. Because they are thin and, thus, without sufficient material to absorb light, it limits their optical absorption and leads to insufficient power conversion efficiency.

Their power conversion efficiency needs to be 10 percent or more to compete in the market, Gan said.

To achieve that benchmark, Gan and other researchers are incorporating metal nanoparticles and/or patterned plasmonic nanostructures into organic photovoltaic cells. Plasmons are electromagnetic waves and free electrons that can be used to oscillate back and forth across the interface of metals and semiconductors.

Recent material studies suggest they are succeeding, he said. Gan and the paper's co-authors argue that, because of these breakthroughs, there should be a renewed focus on how nanomaterials and plasmonic strategies can create more efficient and affordable thin-film organic solar cells.

Gan is continuing his research by collaborating with several researchers at UB including: Alexander N. Cartwright, professor of electrical engineering and biomedical engineering and UB vice president for research and economic development; Mark T. Swihart, UB professor of chemical and biological engineering and director of the university's Strategic Strength in Integrated Nanostructured Systems; and Hao Zeng, associate professor of physics.

Gan is a member of UB's electrical engineering optics and photonics research group, which includes Cartwright, professors Edward Furlani and Pao-Lo Liu, and Natalia Litchinitser, associate professor.

The group carries out research in nanphotonics, biophotonics, hybrid inorganic/organic materials and devices, nonlinear and fiber optics, metamaterials, nanoplasmonics, optofluidics, microelectromechanical systems (MEMS), biomedical microelectromechanical systems (BioMEMs), biosensing and quantum information processing.


Story Source:

The above story is based on materials provided by University at Buffalo. The original article was written by Cory Nealon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qiaoqiang Gan, Filbert J. Bartoli, Zakya H. Kafafi. Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier. Advanced Materials, 2013; 25 (17): 2385 DOI: 10.1002/adma.201203323

Cite This Page:

University at Buffalo. "Solar panels as inexpensive as paint?." ScienceDaily. ScienceDaily, 13 May 2013. <www.sciencedaily.com/releases/2013/05/130513103657.htm>.
University at Buffalo. (2013, May 13). Solar panels as inexpensive as paint?. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/05/130513103657.htm
University at Buffalo. "Solar panels as inexpensive as paint?." ScienceDaily. www.sciencedaily.com/releases/2013/05/130513103657.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins