Featured Research

from universities, journals, and other organizations

Mechanism that puts the curl in the curling stone revealed

Date:
May 13, 2013
Source:
Uppsala Universitet
Summary:
Researchers from Uppsala University in Sweden can now reveal the mechanism behind the curved path of a curling stone. The discovery by the researchers, who usually study friction and wear in industrial and technical applications.

Researchers from Uppsala University in Sweden can now reveal the mechanism behind the curved path of a curling stone. The discovery by the researchers, who usually study friction and wear in industrial and technical applications, is now published in the scientific journal Wear.

In the curling sport, the players shoot their stones along the ice so that they slowly slide towards the target area, almost 30 m away. The game has its name from the slightly curved "curled" path taken by the stone, when released with a slow rotation. This curled path is important since it is used to reach open spots behind previously played stones, or take out opponent stones behind hindering "guarding" stones. As soon as the player releases the stone, it is only affected by the friction against the ice. The friction can be slightly reduced, and therefore the sliding distance somewhat increased by intensively sweeping the ice just in front of the sliding stone.

If the player gives the stone a clockwise rotation as it is released, it curls to the right, while an anti clockwise rotating stone will curl to the left. The stone is heavy, almost 20 kg, and the rotation is very slow, typically 2-3 rotations during the roughly 25 seconds it takes to slide to the target. This is much too slow to cause the curved path taken by the ball in sports such as table tennis, tennis or soccer.

Despite years of speculations among the curlers and several scientific articles, so far no one has been able to present a good explanation to why the curling stones actually curl; "What puts the curl in the curling stone?." Interestingly, other rotating objects sliding over a surface curl in the opposite direction (make a simple test by sliding for example a glass turned upside down over a slippery floor).

However, the mechanism has now been revealed by researchers at Uppsala University in Sweden. Harald Nyberg, Sara Alfredsson, Sture Hogmark and Staffan Jacobson, who usually study friction and wear in technical and industrial material systems, describe in their article that the curved path is due to the microscopic roughness of the stone producing microscopic scratches in the ice sheet. As the stone slides over the ice the roughness on its leading half will produce small scratches in the ice. The rotation of the stone will give the scratches a slight deviation from the sliding direction. When the rough protrusions on the trailing half shortly pass the same area, they will cross the scratches from the front in a small angle. When crossing these scratches they will have a tendency to follow them. It is this scratch-guiding or track steering mechanism that generate the sideway force necessary to cause the curl.

The importance of having a proper roughness of the sliding surface on the stone to give it he expected trajectory, is since long known among curlers. However, this has not previously been coupled to the steering mechanism. While working on their model the Uppsala researchers experimented with pre-scratching of the ice in various ways, and could then observe that also non-rotating stones could be guided. Stones with very smooth, polished sliding surface were however not affected by the scratches. They also investigated the microscopic scratches made by the stones by moulding replicas of the ice, that were subsequently studied in microscopes.


Story Source:

The above story is based on materials provided by Uppsala Universitet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Harald Nyberg, Sara Alfredson, Sture Hogmark, Staffan Jacobson. The asymmetrical friction mechanism that puts the curl in the curlingstone. Wear, 2013; DOI: 10.1016/j.wear.2013.01.051

Cite This Page:

Uppsala Universitet. "Mechanism that puts the curl in the curling stone revealed." ScienceDaily. ScienceDaily, 13 May 2013. <www.sciencedaily.com/releases/2013/05/130513115236.htm>.
Uppsala Universitet. (2013, May 13). Mechanism that puts the curl in the curling stone revealed. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/05/130513115236.htm
Uppsala Universitet. "Mechanism that puts the curl in the curling stone revealed." ScienceDaily. www.sciencedaily.com/releases/2013/05/130513115236.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins