Featured Research

from universities, journals, and other organizations

Stacking 2-D materials produces surprising results

Date:
May 16, 2013
Source:
Massachusetts Institute of Technology
Summary:
New experiments reveal previously unseen effects, could lead to new kinds of electronics and optical devices.

From left: Prof. Ray Ashoori, postdocs Andrea Young and Ben Hunt, graduate student Javier Sanchez-Yamagishi, and Prof. Pablo Jarillo-Herrero. Photo: Jarillo-Herrero and Ashoori groups
Credit: MIT

New experiments reveal previously unseen effects, could lead to new kinds of electronics and optical devices. Graphene has dazzled scientists, ever since its discovery more than a decade ago, with its unequalled electronic properties, its strength and its light weight. But one long-sought goal has proved elusive: how to engineer into graphene a property called a band gap, which would be necessary to use the material to make transistors and other electronic devices.

Now, new findings by researchers at MIT are a major step toward making graphene with this coveted property. The work could also lead to revisions in some theoretical predictions in graphene physics.

The new technique involves placing a sheet of graphene -- a carbon-based material whose structure is just one atom thick -- on top of hexagonal boron nitride, another one-atom-thick material with similar properties. The resulting material shares graphene's amazing ability to conduct electrons, while adding the band gap necessary to form transistors and other semiconductor devices.

The work is described in a paper in the journal Science co-authored by Pablo Jarillo-Herrero, the Mitsui Career Development Assistant Professor of Physics at MIT, Professor of Physics Ray Ashoori, and 10 others.

"By combining two materials," Jarillo-Herrero says, "we created a hybrid material that has different properties than either of the two."

Graphene is an extremely good conductor of electrons, while boron nitride is a good insulator, blocking the passage of electrons. "We made a high-quality semiconductor by putting them together," Jarillo-Herrero explains. Semiconductors, which can switch between conducting and insulating states, are the basis for all modern electronics.

To make the hybrid material work, the researchers had to align, with near perfection, the atomic lattices of the two materials, which both consist of a series of hexagons. The size of the hexagons (known as the lattice constant) in the two materials is almost the same, but not quite: Those in boron nitride are 1.8 percent larger. So while it is possible to line the hexagons up almost perfectly in one place, over a larger area the pattern goes in and out of register.

At this point, the researchers say they must rely on chance to get the angular alignment for the desired electronic properties in the resulting stack. However, the alignment turns out to be correct about one time out of 15, they say.

"The qualities of the boron nitride bleed over into the graphene," Ashoori says. But what's most "spectacular," he adds, is that the properties of the resulting semiconductor can be "tuned" by just slightly rotating one sheet relative to the other, allowing for a spectrum of materials with varied electronic characteristics.

Others have made graphene into a semiconductor by etching the sheets into narrow ribbons, Ashoori says, but such an approach substantially degrades graphene's electrical properties. By contrast, the new method appears to produce no such degradation.

The band gap created so far in the material is smaller than that needed for practical electronic devices; finding ways of increasing it will require further work, the researchers say.

"If … a large band gap could be engineered, it could have applications in all of digital electronics," Jarillo-Herrero says. But even at its present level, he adds, this approach could be applied to some optoelectronic applications, such as photodetectors.

The results "surprised us pleasantly," Ashoori says, and will require some explanation by theorists. Because of the difference in lattice constants of the two materials, the researchers had predicted that the hybrid's properties would vary from place to place. Instead, they found a constant, and unexpectedly large, band gap across the whole surface.

In addition, Jarillo-Herrero says, the magnitude of the change in electrical properties produced by putting the two materials together "is much larger than theory predicts."

The MIT team also observed an interesting new physical phenomenon. When exposed to a magnetic field, the material exhibits fractal properties -- known as a Hofstadter butterfly energy spectrum -- that were described decades ago by theorists, but thought impossible in the real world. There is intense research in this area; two other research groups also report on these Hofstadter butterfly effects this week in the journal Nature.

The research included postdocs Ben Hunt and Andrea Young and graduate student Javier Sanchez-Yamagishi, as well as six other researchers from the University of Arizona, the National Institute for Materials Science in Tsukuba, Japan, and Tohoku University in Japan. The work was funded by the U.S. Department of Energy, the Gordon and Betty Moore Foundation and the National Science Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by David L. Chandler. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. Leroy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R. C. Ashoori. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science, 2013 DOI: 10.1126/science.1237240

Cite This Page:

Massachusetts Institute of Technology. "Stacking 2-D materials produces surprising results." ScienceDaily. ScienceDaily, 16 May 2013. <www.sciencedaily.com/releases/2013/05/130516182025.htm>.
Massachusetts Institute of Technology. (2013, May 16). Stacking 2-D materials produces surprising results. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/05/130516182025.htm
Massachusetts Institute of Technology. "Stacking 2-D materials produces surprising results." ScienceDaily. www.sciencedaily.com/releases/2013/05/130516182025.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
$50bn Yukos Case Latest Russia Cost

$50bn Yukos Case Latest Russia Cost

Reuters - Business Video Online (July 28, 2014) A Hague court has ordered Russia to pay $50 billion to a group of shareholders in defunct oil giant Yukos for expropriating its assets. Russian Foreign Minister Lavrov says Moscow will most likely appeal. As Joel Flynn reports, the ruling hits Russia as it's facing more international sanctions about its role in Ukraine. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins