Featured Research

from universities, journals, and other organizations

Electric and magnetic characteristics of a material which could be used in spintronics: Promising doped zirconia

Date:
May 17, 2013
Source:
Springer Science+Business Media
Summary:
Materials belonging to the family of dilute magnetic oxides (DMOs) - an oxide-based variant of the dilute magnetic semiconductors - are good candidates for spintronics applications.

Materials belonging to the family of dilute magnetic oxides (DMOs) -- an oxide-based variant of the dilute magnetic semiconductors -- are good candidates for spintronics applications. This is the object of study for Davide Sangalli of the Microelectronics and Microsystems Institute (IMM) at the National Research Council (CNR), in Agrate Brianza, Italy, and colleagues.

They recently explored the effect of iron (Fe) doping on thin films of a material called zirconia (ZrO2 oxide). For the first time, the authors bridged the gap between the theoretical predictions and the experimental measurements of this material, in a paper about to be published in The European Physical Journal B.

Spintronics exploit an intrinsic property of the electrons found in semi-conductors called spin, akin to the electrons' degree of freedom. This determines the magnetic characteristics, known as magnetic moment, of the material under study. The challenge is to create such material with the highest possible temperature, as this will ensure that its magnetic properties can be used in room-temperature applications.

To study iron-doped zirconia, they examined its magnetic properties and its electronic structure from both a theoretical and experimental perspective. They then compared theory and experiments to find the most stable configuration of the material. Theoretical work included first-principles simulations. In parallel, their experimental work relied on many different well-established analytical techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and alternating gradient force magnetometer measurements.

Sangalli and colleagues therefore gained a better understanding of doped zirconia, which features oxygen vacancies, playing a crucial role in providing its unique electronic and magnetic characteristics. They have also predicted theoretically how the deviation from the standard structure influences this material's properties. They are currently investigating, experimentally, how the magnetism evolves with changing concentrations of iron and oxygen vacancies to confirm theoretical predictions.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Davide Sangalli, Elena Cianci, Alessio Lamperti, Roberta Ciprian, Franca Albertini, Francesca Casoli, Pierpaolo Lupo, Lucia Nasi, Marco Campanini, Alberto Debernardi. Exploiting magnetic properties of Fe doping in zirconia. The European Physical Journal B, 2013; 86 (5) DOI: 10.1140/epjb/e2013-30669-3

Cite This Page:

Springer Science+Business Media. "Electric and magnetic characteristics of a material which could be used in spintronics: Promising doped zirconia." ScienceDaily. ScienceDaily, 17 May 2013. <www.sciencedaily.com/releases/2013/05/130517094600.htm>.
Springer Science+Business Media. (2013, May 17). Electric and magnetic characteristics of a material which could be used in spintronics: Promising doped zirconia. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2013/05/130517094600.htm
Springer Science+Business Media. "Electric and magnetic characteristics of a material which could be used in spintronics: Promising doped zirconia." ScienceDaily. www.sciencedaily.com/releases/2013/05/130517094600.htm (accessed April 19, 2014).

Share This



More Computers & Math News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
Facebook Announces Location-Sharing Feature 'Nearby Friends'

Facebook Announces Location-Sharing Feature 'Nearby Friends'

Newsy (Apr. 18, 2014) Facebook's pending Nearby Friends feature will give users the option to share their nonspecific or specific locations with certain friends. Video provided by Newsy
Powered by NewsLook.com
Michaels Hack Compromises About 3 Million Credit Cards

Michaels Hack Compromises About 3 Million Credit Cards

Newsy (Apr. 18, 2014) Michaels is now confirming that an eight-month security breach compromised about 3 million customers' credit and debit card data. Video provided by Newsy
Powered by NewsLook.com
Twitter Introduces Facebook-Style App Install Ads

Twitter Introduces Facebook-Style App Install Ads

Newsy (Apr. 17, 2014) Twitter hopes to make money on app install ads, which has proven to be a successful strategy for Facebook. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins