Featured Research

from universities, journals, and other organizations

Nanoantennas improve infrared sensing

Date:
May 20, 2013
Source:
University of Pennsylvania
Summary:
Engineers have used a pattern of nanoantennas to develop a new way of turning infrared light into mechanical action, opening the door to more sensitive infrared cameras and more compact chemical-analysis techniques.

A diagram showing how the researchers' optomechanical infrared-detecting structure works.
Credit: Image courtesy of University of Pennsylvania

A team of University of Pennsylvania engineers has used a pattern of nanoantennas to develop a new way of turning infrared light into mechanical action, opening the door to more sensitive infrared cameras and more compact chemical-analysis techniques.

The research was conducted by assistant professor Ertugrul Cubukcu and postdoctoral researcher Fei Yi, along with graduate students Hai Zhu and Jason C. Reed, all of the Department of Material Science and Engineering in Penn's School of Engineering and Applied Science.

It was published in the journal Nano Letters.

Detecting light in the mid-infrared range is important for applications like night-vision cameras, but it can also be used to do spectroscopy, a technique that involves scattering light over a substance to infer its chemical composition. Existing infrared detectors use cryogenically cooled semiconductors, or thermal detectors known as microbolometers, in which changes in electrical resistance can be correlated to temperatures. These techniques have their own advantages, but both need expensive, bulky equipment to be sensitive enough for spectroscopy applications.

"We set out to make an optomechanical thermal infrared detector," Cubukcu said. "Rather than changes in resistance, our detector works by connecting mechanical motion to changes in temperature."

The advantage to this approach is that it could reduce the footprint of an infrared sensing device to something that would fit on a disposable silicon chip. The researchers fabricated such a device in their study.

At the core of the device is a nanoscale structure -- about a tenth of a millimeter wide and five times as long -- made of a layer of gold bonded to a layer of silicon nitride. The researchers chose these materials because of their different thermal expansion coefficients, a parameter that determines how much a material will expand when heated. Because metals will naturally convert some energy from infrared light into heat, researchers can connect the amount the material expands to the amount of infrared light hitting it.

"A single layer would expand laterally, but our two layers are constrained because they're attached to one another," Cubukcu said. "The only way they can expand is in the third dimension. In this case, that means bending toward the gold side, since gold has the higher thermal expansion coefficient and will expand more."

To measure this movement, the researchers used a fiber interferometer. A fiber optic cable pointed upward at this system bounces light off the underside of the silicon nitride layer, enabling the researchers to determine how far the structure has bent upwards.

"We can tell how far the bottom layer has moved based on this reflected light," Cubukcu said. "We can even see displacements that are thousands of times smaller than a hydrogen atom."

Other researchers have developed optomechanical infrared sensors based on this principle, but their sensitivities have been comparatively low. The Penn team's device is an improvement in this regard due to the inclusion of "slot" nanoantennas, cavities that are etched into the gold layer at intervals that correspond to wavelengths of mid-infrared light.

"The infrared radiation is concentrated into the slots, so you don't need any additional material to make these antennas," Cubukcu said. "We take the same exact platform and, by patterning it with these nanoscale antennas, the conversion efficiency of the detector improves 10 times."

The inclusion of nanoantennas provides the device with an additional advantage: the ability to tailor which type of light it is sensitive to by etching a different pattern of slots on the surface.

"Other techniques can only work at the maximum absorption determined by the material itself," Yi said. "Our antennas can be engineered to absorb at any wavelength."

While only a proof-of-concept at this stage, future research will demonstrate the device's capabilities as a low-cost way of analyzing individual proteins and gas molecules.

The research was supported by the National Science Foundation, Penn's Materials Research Science and Engineering Center, Penn's Nano/Bio Interface Center and the Penn Regional Nanotechnology Facility.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fei Yi, Hai Zhu, Jason C. Reed, Ertugrul Cubukcu. Plasmonically Enhanced Thermomechanical Detection of Infrared Radiation. Nano Letters, 2013; 130320090705008 DOI: 10.1021/nl400087b

Cite This Page:

University of Pennsylvania. "Nanoantennas improve infrared sensing." ScienceDaily. ScienceDaily, 20 May 2013. <www.sciencedaily.com/releases/2013/05/130520142912.htm>.
University of Pennsylvania. (2013, May 20). Nanoantennas improve infrared sensing. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/05/130520142912.htm
University of Pennsylvania. "Nanoantennas improve infrared sensing." ScienceDaily. www.sciencedaily.com/releases/2013/05/130520142912.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins