Featured Research

from universities, journals, and other organizations

Chemists find new compounds to curb staph infection

Date:
May 23, 2013
Source:
University of Wisconsin-Madison
Summary:
In an age when microbial pathogens are growing increasingly resistant to the conventional antibiotics used to tamp down infection, scientists have synthesized a potent new class of compounds capable of curbing the bacteria that cause staph infections.

These assays were used to assess the effects of new agents to disrupt communication among pathogenic staph bacteria. Research shows promise for a new approach to thwarting staph infections, which are increasingly resistant to conventional antibiotics.
Credit: Photo courtesy of Blackwell Lab

In an age when microbial pathogens are growing increasingly resistant to the conventional antibiotics used to tamp down infection, a team of Wisconsin scientists has synthesized a potent new class of compounds capable of curbing the bacteria that cause staph infections.

Related Articles


Writing online in the Journal of the American Chemical Society, a group led by University of Wisconsin-Madison chemistry professor Helen Blackwell describes agents that effectively interfere with the "quorum sensing" behavior of Staphylococcus aureus, a bacterium at the root of a host of human infections ranging from acne to life-threatening conditions such as pneumonia, toxic shock syndrome and sepsis.

"It's a whole new world for us," says Blackwell, whose group identified peptide-based signaling molecules that effectively outcompete the native molecules the bacterium uses to communicate and activate the genes that cause disease.

Bacteria use quorum sensing to assess their population density and coordinate certain behaviors. They do so through the use of pheromone-like chemicals, which bind to receptors either in the bacterial cell or on its surface and tell it if there are enough companion bacteria around to switch on genes that perform certain functions. In the case of Staphylococcus aureus, quorum sensing activates toxin production, manifesting disease in the host.

Interfering with bacterial quorum sensing to stymie disease is considered a promising new antibiotic strategy, says Blackwell. Staph, she adds, is an excellent target as the bacterium is not only a prevalent pathogen, but some strains, notably methicillin-resistant Staphylococcus aureus or MRSA, have developed resistance to commonly used antibiotics such as penicillin and its derivatives.

These assays were used to assess the effects of new agents to disrupt communication among pathogenic staph bacteria. Research shows promise for a new approach to thwarting staph infections, which are increasingly resistant to conventional antibiotics.

The new compounds synthesized by Blackwell and her colleagues are peptides that work at very low concentrations by blocking the chemical receptors the bacterium uses to regulate quorum sensing. The new agents devised by Blackwell and her group work on the four subtypes of staph, all of which use different quorum sensing signals and are found in different infection types.

"We had not worked much in this area because the (signaling molecules) are somewhat challenging to synthesize," explains Blackwell. "We now have developed methods to make these molecules and analogs much more efficiently, which helped fuel this new study."

For now, the compounds devised by the Wisconsin team will have their greatest impact in the lab as research probes to further study the role of quorum sensing in Staphylococcus aureus. In addition, the gritty details of how these synthetic agents work in the cell need to be determined in order to optimize their potential use in both the lab and clinic. Such studies are ongoing.

"The impact of these new peptides could be significant because staph is an important and increasingly scary pathogen. There is plenty of scope," notes Blackwell.

The new research was conducted with support from the Office of Naval Research, the Burroughs Welcome Fund and the Kimberly-Clark Corp.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. The original article was written by Terry Devitt. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yftah Tal-Gan, Danielle M. Stacy, Mary K. Foegen, David W. Koenig, Helen E. Blackwell. Highly Potent Inhibitors of Quorum Sensing in Staphylococcus aureus Revealed Through a Systematic Synthetic Study of the Group-III Autoinducing Peptide. Journal of the American Chemical Society, 2013; 130517075635007 DOI: 10.1021/ja3112115

Cite This Page:

University of Wisconsin-Madison. "Chemists find new compounds to curb staph infection." ScienceDaily. ScienceDaily, 23 May 2013. <www.sciencedaily.com/releases/2013/05/130523093321.htm>.
University of Wisconsin-Madison. (2013, May 23). Chemists find new compounds to curb staph infection. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2013/05/130523093321.htm
University of Wisconsin-Madison. "Chemists find new compounds to curb staph infection." ScienceDaily. www.sciencedaily.com/releases/2013/05/130523093321.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Bring on So Many Different Emotions in Their Human Best Friends

Dogs Bring on So Many Different Emotions in Their Human Best Friends

RightThisMinute (Jan. 28, 2015) From new-puppy happy tears to helpful-grocery-carrying-dog laughter, our four-legged best friends can make us feel the entire spectrum of emotions. Video provided by RightThisMinute
Powered by NewsLook.com
Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Newsy (Jan. 28, 2015) Wrongly categorized as lizard fossils, snake fossils now show the reptile could have developed earlier than we thought — 70 million years earlier. Video provided by Newsy
Powered by NewsLook.com
Sugary Drinks May Cause Early Puberty In Girls, Study Says

Sugary Drinks May Cause Early Puberty In Girls, Study Says

Newsy (Jan. 28, 2015) Harvard researchers found that girls who consumed more than 1.5 sugary drinks a day had their first period earlier than those who drank less. Video provided by Newsy
Powered by NewsLook.com
Scientists Hold Emergency Meeting to Save Endangered Rhinos

Scientists Hold Emergency Meeting to Save Endangered Rhinos

AFP (Jan. 28, 2015) Conservationists and scientists hold talks in Kenya to come up with a last ditch plan to save the northern white rhinoceros from extinction. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins