Featured Research

from universities, journals, and other organizations

Genetic editing shows promise in Duchenne muscular dystrophy

Date:
June 4, 2013
Source:
Duke University
Summary:
Using a novel genetic "editing" technique, biomedical engineers have been able to repair a defect responsible for one of the most common inherited disorders, Duchenne muscular dystrophy, in cell samples from Duchenne patients.

The TALEN finds its target site in the human genome by binding to DNA, shown in green, with an engineered DNA-recognition protein, shown in orange. Once the protein finds its target site, the DNA is modified by the enzyme domain of the protein shown in blue.
Credit: Charles Gersbach

Using a novel genetic 'editing' technique, Duke University biomedical engineers have been able to repair a defect responsible for one of the most common inherited disorders, Duchenne muscular dystrophy, in cell samples from Duchenne patients.

Instead of the common gene therapy approach of adding new genetic material to "override" the faulty gene, the Duke scientists have developed a way to change the existing mutated gene responsible for the disorder into a normally functioning gene. The Duke researchers believe their approach could be safer and more stable than current methods of gene therapy.

The researchers are now conducting further tests of this new approach in animal models of the disease.

Duchenne muscular dystrophy is a genetic disease affecting one in 3,600 newborn males. The genetic mutation is found on the X chromosome, of which males have only one copy. (Females, with two X chromosomes, presumably have at least one good copy of the gene.)

Patients with Duchenne muscular dystrophy cannot produce the protein known as dystrophin, which is essential in maintaining the structural integrity of muscle fibers. Over time, patients with the disorder suffer gradual muscle deterioration, which leads to paralysis and eventual death, usually by age 25.

"Conventional genetic approaches to treating the disease involve adding normal genes to compensate for the mutated genes," said Charles Gersbach, assistant professor of biomedical engineering at Duke's Pratt School of Engineering and Department of Orthopaedic Surgery and member of Duke's Institute for Genome Sciences and Policy. "However, this can cause other unforeseen problems, or the beneficial effect does not always last very long.

"Our approach actually repairs the faulty gene, which is a lot simpler," said David Ousterout, the Duke biomedical engineering graduate student in the Gersbach lab who led the work. "It finds the faulty gene, and fixes it so it can start producing a functional protein again."

The results of the Duke study were published online in Molecular Therapy, the journal of the American Society for Gene and Cell Therapy. The project was supported by the Hartwell Foundation, the March of Dimes Foundation and the National Institutes of Health.

The Duke experiments, which were carried out in cell samples from Duchenne muscular dystrophy patients, were made possible by using a new technology for building synthetic proteins known as transcription activator-like effector nucleases (TALENs), which are artificial enzymes that can be engineered to bind to and modify almost any gene sequence.

These TALENs bind to the defective gene, and can correct the mutation to create a normally functioning gene.

"There is currently no effective treatment for this disease," Gersbach said. "Patients usually are in a wheelchair by the age of ten and many die in their late teens or early twenties."

Duchenne muscular dystrophy has been extensively studied by scientists, and it is believed that more than 60 percent of patients with this type of mutation can be treated with this novel genetic approach.

"Previous studies indicate that restoring the production of dystrophin proteins will be highly functional and alleviate disease symptoms when expressed in skeletal muscle tissue," said Ousterout.

Similar approaches could be helpful in treating other genetic diseases where a few gene mutations are responsible, such as sickle cell disease, hemophilia, or other muscular dystrophies, Gersbach said.

Other members of the team were Duke's Pablo Perez-Pinera, Pratiksha Thakore, Ami Kabadi, Matthew Brown, Xiaoxia Qin, and Olivier Fedrigo. Other participants were Vincent Mouly, Universite Pierre at Marie Curie, Paris, and Jacques Tremblay, Universite Laval, Quebec.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. David G Ousterout, Pablo Perez-Pinera, Pratiksha I Thakore, Ami M Kabadi, Matthew T Brown, Xiaoxia Qin, Olivier Fedrigo, Vincent Mouly, Jacques P Tremblay, Charles A Gersbach. Reading Frame Correction by Targeted Genome Editing Restores Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients. Molecular Therapy, 2013; DOI: 10.1038/mt.2013.111

Cite This Page:

Duke University. "Genetic editing shows promise in Duchenne muscular dystrophy." ScienceDaily. ScienceDaily, 4 June 2013. <www.sciencedaily.com/releases/2013/06/130604153946.htm>.
Duke University. (2013, June 4). Genetic editing shows promise in Duchenne muscular dystrophy. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/06/130604153946.htm
Duke University. "Genetic editing shows promise in Duchenne muscular dystrophy." ScienceDaily. www.sciencedaily.com/releases/2013/06/130604153946.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins