Featured Research

from universities, journals, and other organizations

Pendulum swings back on 350-year-old mathematical mystery

Date:
June 10, 2013
Source:
University of Pittsburgh
Summary:
A 350-year-old mathematical mystery could lead toward a better understanding of medical conditions like epilepsy or even the behavior of predator-prey systems in the wild, researchers report.

A 350-year-old mathematical mystery could lead toward a better understanding of medical conditions like epilepsy or even the behavior of predator-prey systems in the wild, University of Pittsburgh researchers report.

The mystery dates back to 1665, when Dutch mathematician, astronomer, and physicist Christiaan Huygens, inventor of the pendulum clock, first observed that two pendulum clocks mounted together could swing in opposite directions. The cause was tiny vibrations in the beam caused by both clocks, affecting their motions.

The effect, now referred to by scientists as "indirect coupling," was not mathematically analyzed until nearly 350 years later, and deriving a formula that explains it remains a challenge to mathematicians still. Now, Pitt professors apply this principle to measure the interaction of "units" -- such as neurons, for example -- that turn "off" and "on" repeatedly. Their findings are highlighted in the latest issue of Physical Review Letters.

"We have developed a mathematical approach to better understanding the 'ingredients' in a system that affect synchrony in a number of medical and ecological conditions," said Jonathan E. Rubin, coauthor of the study and professor in Pitt's Department of Mathematics within the Kenneth P. Dietrich School of Arts and Sciences. "Researchers can use our ideas to generate predictions that can be tested through experiments."

More specifically, the researchers believe the formula could lead toward a better understanding of conditions like epilepsy, in which neurons become overly active and fail to turn off, ultimately leading to seizures. Likewise, it could have applications in other areas of biology, such as understanding how bacteria use external cues to synchronize growth.

Together with G. Bard Ermentrout, University Professor of Computational Biology and professor in Pitt's Department of Mathematics, and Jonathan J. Rubin, an undergraduate mathematics major, Jonathan E. Rubin examined these forms of indirect communication that are not typically included in most mathematical studies owing to their complicated elements. In addition to studying neurons, the Pitt researchers applied their methods to a model of artificial gene networks in bacteria, which are used by experimentalists to better understand how genes function.

"In the model we studied, the genes turn off and on rhythmically. While on, they lead to production of proteins and a substance called an autoinducer, which promotes the genes turning on," said Jonathan E. Rubin. "Past research claimed that this rhythm would occur simultaneously in all the cells. But we show that, depending on the speed of communication, the cells will either go together or become completely out of synch with each another."

To apply their formula to an epilepsy model, the team assumed that neurons oscillate, or turn off and on in a regular fashion. Ermentrout compares this to Southeast Asian fireflies that flash rhythmically, encouraging synchronization.

"For neurons, we have shown that the slow nature of these interactions encouraged 'asynchrony,' or firing at different parts of the cycle," Ermentrout said. "In these seizure-like states, the slow dynamics that couple the neurons together are such that they encourage the neurons to fire all out of phase with each other."

The Pitt researchers believe this approach may extend beyond medical applications into ecology -- for example, a situation in which two independent animal groups in a common environment communicate indirectly. Jonathan E. Rubin illustrates the idea by using a predator-prey system, such as rabbits and foxes.

"With an increase in rabbits will come an increase in foxes, as they'll have plenty of prey," said Jonathan E. Rubin. "More rabbits will get eaten, but eventually the foxes won't have enough to eat and will die off, allowing the rabbit numbers to surge again. Voila, it's an oscillation. So, if we have a fox-rabbit oscillation and a wolf-sheep oscillation in the same field, the two oscillations could affect each other indirectly because now rabbits and sheep are both competing for the same grass to eat."


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan J. Rubin, Jonathan E. Rubin, G. Bard Ermentrout. Analysis of Synchronization in a Slowly Changing Environment: How Slow Coupling Becomes Fast Weak Coupling. Physical Review Letters, 2013; 110 (20) DOI: 10.1103/PhysRevLett.110.204101

Cite This Page:

University of Pittsburgh. "Pendulum swings back on 350-year-old mathematical mystery." ScienceDaily. ScienceDaily, 10 June 2013. <www.sciencedaily.com/releases/2013/06/130610133127.htm>.
University of Pittsburgh. (2013, June 10). Pendulum swings back on 350-year-old mathematical mystery. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2013/06/130610133127.htm
University of Pittsburgh. "Pendulum swings back on 350-year-old mathematical mystery." ScienceDaily. www.sciencedaily.com/releases/2013/06/130610133127.htm (accessed April 20, 2014).

Share This



More Computers & Math News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

AFP (Apr. 19, 2014) The Nintendo Game Boy celebrates its 25th anniversary Monday and game expert Stephen Upstone says the console can be credited with creating a trend towards handheld gaming devices. Duration: 01:21 Video provided by AFP
Powered by NewsLook.com
Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Nearly Two Weeks On, The Internet Copes With Heartbleed

Nearly Two Weeks On, The Internet Copes With Heartbleed

Newsy (Apr. 19, 2014) The Internet is taking important steps in patching the vulnerabilities Heartbleed highlighted, but those preventive measures carry their own costs. Video provided by Newsy
Powered by NewsLook.com
Facebook To Share Nearby Friends Data With Advertisers

Facebook To Share Nearby Friends Data With Advertisers

Newsy (Apr. 19, 2014) A Facebook spokesperson has confirmed the company will use GPS data from the new Nearby Friends feature for advertising sometime in the future. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins