Featured Research

from universities, journals, and other organizations

Shape of nanoparticles points the way toward more targeted drugs

Date:
June 10, 2013
Source:
Sanford-Burnham Medical Research Institute
Summary:
The shape of nanoparticles can enhance drug targeting, according to new research. The study found that rod-shaped nanoparticles -- or nanorods -- as opposed to spherical nanoparticles, appear to adhere more effectively to the surface of endothelial cells that line the inside of blood vessels.

Conventional treatments for diseases such as cancer can carry harmful side effects -- and the primary reason is that such treatments are not targeted specifically to the cells of the body where they're needed. What if drugs for cancer, cardiovascular disease, and other diseases can be targeted specifically and only to cells that need the medicine, and leave normal tissues untouched?

A new study involving Sanford-Burnham Medical Research Institute's Erkki Ruoslahti, M.D., Ph.D., contributing to work by Samir Mitragotri, Ph.D., at the University of California, Santa Barbara, found that the shape of nanoparticles can enhance drug targeting. The study, published in Proceedings of the National Academy of Sciences, found that rod-shaped nanoparticles -- or nanorods -- as opposed to spherical nanoparticles, appear to adhere more effectively to the surface of endothelial cells that line the inside of blood vessels.

"While nanoparticle shape has been shown to impact cellular uptake, the latest study shows that specific tissues can be targeted by controlling the shape of nanoparticles. Keeping the material, volume, and the targeting antibody the same, a simple change in the shape of the nanoparticle enhances its ability to target specific tissues," said Mitragotri.

"The elongated particles are more effective," added Ruoslahti. "Presumably the reason is that if you have a spherical particle and it has binding sites on it, the curvature of the sphere allows only so many of those binding sites to interact with membrane receptors on the surface of a cell."

In contrast, the elongated nanorods have a larger surface area that is in contact with the surface of the endothelial cells. More of the antibodies that coat the nanorod can therefore bind receptors on the surface of endothelial cells, and that leads to more effective cell adhesion and more effective drug delivery.

Testing targeted nanoparticles

Mitragotri's lab tested the efficacy of rod-shaped nanoparticles in synthesized networks of channels called "synthetic microvascular networks," or SMNs, that mimic conditions inside blood vessels. The nanoparticles were also tested in vivo in animal models, and separately in mathematical models.

The researchers also found that nanorods targeted to lung tissue in mice accumulated at a rate that was two-fold over nanospheres engineered with the same targeting antibody. Also, enhanced targeting of nanorods was seen in endothelial cells in the brain, which has historically been a challenging organ to target with drugs.

Nanoparticles already used in some cancer drugs

Nanoparticles have been studied as vessels to carry drugs through the body. Once they are engineered with antibodies that bind to specific receptors on the surface of targeted cells, these nanoparticles also can, in principle, become highly specific to the disease they are designed to treat.

Ruoslahti, a pioneer in the field of cell adhesion -- how cells bind to their surroundings -- has developed small chain molecules called peptides that can be used to target drugs to tumors and atherosclerotic plaques.

Promising results

"Greater specific attachment exhibited by rod-shaped particles offers several advantages in the field of drug delivery, particularly in the delivery of drugs such as chemotherapeutics, which are highly toxic and necessitate the use of targeted approaches," the authors wrote in their paper.

The studies demonstrate that nanorods with a high aspect ratio attach more effectively to targeted cells compared with spherical nanoparticles. The findings hold promise for the development of novel targeted therapies with fewer harmful side effects.


Story Source:

The above story is based on materials provided by Sanford-Burnham Medical Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Poornima Kolhar, Aaron C. Anselmo, Vivek Gupta, Kapil Pant, Balabhaskar Prabhakarpandian, Erkki Ruoslahti, and Samir Mitragotri. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. PNAS, June 10, 2013 DOI: 10.1073/pnas.1308345110

Cite This Page:

Sanford-Burnham Medical Research Institute. "Shape of nanoparticles points the way toward more targeted drugs." ScienceDaily. ScienceDaily, 10 June 2013. <www.sciencedaily.com/releases/2013/06/130610152138.htm>.
Sanford-Burnham Medical Research Institute. (2013, June 10). Shape of nanoparticles points the way toward more targeted drugs. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/06/130610152138.htm
Sanford-Burnham Medical Research Institute. "Shape of nanoparticles points the way toward more targeted drugs." ScienceDaily. www.sciencedaily.com/releases/2013/06/130610152138.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Fauci: Ebola Protocols to Focus on Training

Fauci: Ebola Protocols to Focus on Training

AP (Oct. 20, 2014) Dr. Anthony Fauci, head of the National Institute of Allergy and Infectious Diseases, says he expects revised CDC protocols on Ebola to focus on training, observation and ensuring health care workers are more protected. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins