Featured Research

from universities, journals, and other organizations

Moon radiation findings may reduce health risks to astronauts

Date:
June 11, 2013
Source:
University of New Hampshire
Summary:
Space scientists report that data gathered by NASA's Lunar Reconnaissance Orbiter show lighter materials like plastics provide effective shielding against the radiation hazards faced by astronauts during extended space travel. The finding could help reduce health risks to humans on future missions into deep space.

Artist’s conception of NASA’s Lunar Reconnaissance Orbiter above the Moon. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument is visible in the center of the image at the bottom left corner of the spacecraft.
Credit: NASA

Space scientists from the University of New Hampshire (UNH) and the Southwest Research Institute (SwRI) report that data gathered by NASA's Lunar Reconnaissance Orbiter (LRO) show lighter materials like plastics provide effective shielding against the radiation hazards faced by astronauts during extended space travel. The finding could help reduce health risks to humans on future missions into deep space.

Aluminum has always been the primary material in spacecraft construction, but it provides relatively little protection against high-energy cosmic rays and can add so much mass to spacecraft that they become cost-prohibitive to launch.

The scientists have published their findings online in the American Geophysical Union journal Space Weather. Titled "Measurements of Galactic Cosmic Ray Shielding with the CRaTER Instrument," the work is based on observations made by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on board the LRO spacecraft. Lead author of the paper is Cary Zeitlin of the SwRI Earth, Oceans, and Space Department at UNH. Co-author Nathan Schwadron of the UNH Institute for the Study of Earth, Oceans, and Space is the principal investigator for CRaTER.

Says Zeitlin, "This is the first study using observations from space to confirm what has been thought for some time -- that plastics and other lightweight materials are pound-for-pound more effective for shielding against cosmic radiation than aluminum. Shielding can't entirely solve the radiation exposure problem in deep space, but there are clear differences in effectiveness of different materials."

The plastic-aluminum comparison was made in earlier ground-based tests using beams of heavy particles to simulate cosmic rays. "The shielding effectiveness of the plastic in space is very much in line with what we discovered from the beam experiments, so we've gained a lot of confidence in the conclusions we drew from that work," says Zeitlin. "Anything with high hydrogen content, including water, would work well."

The space-based results were a product of CRaTER's ability to accurately gauge the radiation dose of cosmic rays after passing through a material known as "tissue-equivalent plastic," which simulates human muscle tissue. Prior to CRaTER and recent measurements by the Radiation Assessment Detector (RAD) on the Mars rover Curiosity, the effects of thick shielding on cosmic rays had only been simulated in computer models and in particle accelerators, with little observational data from deep space.

The CRaTER observations have validated the models and the ground-based measurements, meaning that lightweight shielding materials could safely be used for long missions, provided their structural properties can be made adequate to withstand the rigors of spaceflight.

Since LRO's launch in 2009, the CRaTER instrument has been measuring energetic charged particles -- particles that can travel at nearly the speed of light and may cause detrimental health effects -- from galactic cosmic rays and solar particle events. Fortunately, Earth's thick atmosphere and strong magnetic field provide adequate shielding against these dangerous high-energy particles.


Story Source:

The above story is based on materials provided by University of New Hampshire. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Zeitlin, A. W. Case, H. E. Spence, N. A. Schwadron, M. Golightly, J. K. Wilson, J. C. Kasper, J. B. Blake, M. D. Looper, J. E. Mazur, L. W.Townsend, Y. Iwata. Measurements of galactic cosmic ray shielding with the CRaTER instrument. Space Weather, 2013; DOI: 10.1002/swe.20043

Cite This Page:

University of New Hampshire. "Moon radiation findings may reduce health risks to astronauts." ScienceDaily. ScienceDaily, 11 June 2013. <www.sciencedaily.com/releases/2013/06/130611144325.htm>.
University of New Hampshire. (2013, June 11). Moon radiation findings may reduce health risks to astronauts. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/06/130611144325.htm
University of New Hampshire. "Moon radiation findings may reduce health risks to astronauts." ScienceDaily. www.sciencedaily.com/releases/2013/06/130611144325.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins