Featured Research

from universities, journals, and other organizations

Discovery of new material state counterintuitive to laws of physics

Date:
June 12, 2013
Source:
DOE/Argonne National Laboratory
Summary:
When you squeeze something, it gets smaller -- unless you're among a group of scientists who have seemingly defied the laws of physics and found a way to apply pressure to make a material expand instead of compress/contract.

“It’s like squeezing a stone and forming a giant sponge,” said Argonne chemist Karena Chapman. “Materials are supposed to become denser and more compact under pressure. We are seeing the exact opposite."
Credit: Image courtesy of DOE/Argonne National Laboratory

When you squeeze something, it gets smaller. Unless you're at Argonne National Laboratory.

Related Articles


At the suburban Chicago laboratory, a group of scientists has seemingly defied the laws of physics and found a way to apply pressure to make a material expand instead of compress/contract.

"It's like squeezing a stone and forming a giant sponge," said Karena Chapman, a chemist at the U.S. Department of Energy laboratory. "Materials are supposed to become denser and more compact under pressure. We are seeing the exact opposite. The pressure-treated material has half the density of the original state. This is counterintuitive to the laws of physics."

Because this behavior seems impossible, Chapman and her colleagues spent several years testing and retesting the material until they believed the unbelievable and understood how the impossible could be possible. For every experiment, they got the same mind-bending results.

"The bonds in the material completely rearrange," Chapman said. "This just blows my mind."

This discovery will do more than rewrite the science text books; it could double the variety of porous framework materials available for manufacturing, health care and environmental sustainability.

Scientists use these framework materials, which have sponge-like holes in their structure, to trap, store and filter materials. The shape of the sponge-like holes makes them selectable for specific molecules, allowing their use as water filters, chemical sensors and compressible storage for carbon dioxide sequestration of hydrogen fuel cells. By tailoring release rates, scientists can adapt these frameworks to deliver drugs and initiate chemical reactions for the production of everything from plastics to foods.

"This could not only open up new materials to being porous, but it could also give us access to new structures for selectability and new release rates," said Peter Chupas, an Argonne chemist who helped discover the new materials.

The team published the details of their work in the May 22 issue of the Journal of the American Chemical Society in an article titled "Exploiting High Pressures to Generate Porosity, Polymorphism, And Lattice Expansion in the Nonporous Molecular Framework Zn(CN)2 ."

The scientists put zinc cyanide, a material used in electroplating, in a diamond-anvil cell at the Advanced Photon Source (APS) at Argonne and applied high pressures of 0.9 to 1.8 gigapascals, or about 9,000 to 18,000 times the pressure of the atmosphere at sea level. This high pressure is within the range affordably reproducible by industry for bulk storage systems. By using different fluids around the material as it was squeezed, the scientists were able to create five new phases of material, two of which retained their new porous ability at normal pressure. The type of fluid used determined the shape of the sponge-like pores. This is the first time that hydrostatic pressure has been able to make dense materials with interpenetrated atomic frameworks into novel porous materials. Several series of in situ high-pressure X-ray powder diffraction experiments were performed at the 1-BM, 11-ID-B, and 17-BM beamlines of the APS to study the material transitions.

"By applying pressure, we were able to transform a normally dense, nonporous material into a range of new porous materials that can hold twice as much stuff," Chapman said. "This counterintuitive discovery will likely double the amount of available porous framework materials, which will greatly expand their use in pharmaceutical delivery, sequestration, material separation and catalysis."

The scientists will continue to test the new technique on other materials.

The research is funded by the U.S. Department of Energy's Office of Science.


Story Source:

The above story is based on materials provided by DOE/Argonne National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Saul H. Lapidus, Gregory J. Halder, Peter J. Chupas, Karena W. Chapman. Exploiting High Pressures to Generate Porosity, Polymorphism, And Lattice Expansion in the Nonporous Molecular Framework Zn(CN)2. Journal of the American Chemical Society, 2013; 135 (20): 7621 DOI: 10.1021/ja4012707

Cite This Page:

DOE/Argonne National Laboratory. "Discovery of new material state counterintuitive to laws of physics." ScienceDaily. ScienceDaily, 12 June 2013. <www.sciencedaily.com/releases/2013/06/130612224230.htm>.
DOE/Argonne National Laboratory. (2013, June 12). Discovery of new material state counterintuitive to laws of physics. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2013/06/130612224230.htm
DOE/Argonne National Laboratory. "Discovery of new material state counterintuitive to laws of physics." ScienceDaily. www.sciencedaily.com/releases/2013/06/130612224230.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com
Tackling Congestion in the World's Worst Traffic City

Tackling Congestion in the World's Worst Traffic City

Reuters - News Video Online (Apr. 16, 2015) New transportation system and regulations aim to resolve gridlock in Jakarta, which has been named the city with the world&apos;s worst traffic. Angie Teo reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins