Featured Research

from universities, journals, and other organizations

Spot-welding graphene nanoribbons atom by atom

Date:
June 13, 2013
Source:
Aalto University
Summary:
Scientists have created single atom contacts between gold and graphene nanoribbons.

Scientists at Aalto University, Finland and Utrecht University, the Netherlands have created single atom contacts between gold and graphene nanoribbons.

In their article published in Nature Communications, the research team demonstrates how to make electrical contacts with single chemical bonds to graphene nanoribbons. Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. It is anticipated to be a revolutionising material for future electronics.

Graphene transistors functioning at room temperature require working at the size scale of less than 10 nanometres. This means that the graphene nanostructures have to be only a few tens of atoms in width. These transistors will need atomically precise electrical contacts. A team of researchers have now demonstrated experimentally how this can be done.

In their article the scientists address the problem by demonstrating how a single chemical bond can be used to make an electrical contact to a graphene nanoribbon.

- We cannot use alligator clips on the atomic scale. Using well-defined chemical bonds is the way forward for graphene nanostructures to realise their potential in future electronics, says Professor Peter Liljeroth who heads the Atomic Scale Physics group at Aalto University.

The team used atomic force microscopy (AFM) and scanning tunnelling microscopy (STM) to map the structure of the graphene nanoribbons with atomic resolution. The researchers used voltage pulses from the tip of the scanning tunnelling microscope to form single bonds to the graphene nanoribbons -- precisely at a specific atomic location. The pulse removes a single hydrogen atom from the end of a graphene nanoribbon and this initiates the bond formation.

- Combined AFM and STM allows us to characterise the graphene nanostructures atom-by-atom, which is critical in understanding how the structure, the bonds with the contacts and their electrical properties are related, explains Dr Ingmar Swart who leads the team concentrating on STM and AFM measurements at Utrecht University.

Combining the microscopy experiments with theoretical modelling, the team developed a detailed picture of the contacted nanoribbon properties. The most significant discovery is that a single chemical bond forms an electronically transparent contact with the graphene nanoribbon -- without affecting its overall electronic structure. This may be the key to using graphene nanostructures in future electronic devices, as the contact does not change the intrinsic ribbon properties.

- These experiments on atomically well-defined structures allow us to quantitatively compare theory and experiment. This is a great opportunity to test novel theoretical ideas, concludes Dr Ari Harju, leader of the theoretical team in the project at Aalto University.

The study was performed at Aalto University Department of Applied Physics and at the Debye Institute in Utrecht University. The groups at Aalto are part of the Academy of Finland's Centres of Excellence in "Low Temperature Quantum Phenomena and Devices" and "Computational Nanosciences." Academy of Finland and the European Research Council ERC funded the research.


Story Source:

The above story is based on materials provided by Aalto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joost van der Lit, Mark P. Boneschanscher, Daniλl Vanmaekelbergh, Mari Ijδs, Andreas Uppstu, Mikko Ervasti, Ari Harju, Peter Liljeroth, Ingmar Swart. Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3023

Cite This Page:

Aalto University. "Spot-welding graphene nanoribbons atom by atom." ScienceDaily. ScienceDaily, 13 June 2013. <www.sciencedaily.com/releases/2013/06/130613092238.htm>.
Aalto University. (2013, June 13). Spot-welding graphene nanoribbons atom by atom. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/06/130613092238.htm
Aalto University. "Spot-welding graphene nanoribbons atom by atom." ScienceDaily. www.sciencedaily.com/releases/2013/06/130613092238.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Teases India Event, Possible Android One Reveal

Google Teases India Event, Possible Android One Reveal

Newsy (Sep. 1, 2014) — Google has announced a Sept. 15 event in India during which they're expected to reveal their Android One phones. Video provided by Newsy
Powered by NewsLook.com
Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins