Featured Research

from universities, journals, and other organizations

DNA brings materials to life: DNA-coated colloids help create novel self-assembling materials

Date:
June 13, 2013
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
A colloid is a substance spread out evenly inside another substance. Everyday examples include milk, styrofoam, hair sprays, paints, shaving foam, gels and even dust, mud and fog. One of the most interesting properties of colloids is their ability to self-assemble -- to aggregate spontaneously into well-defined structures, driven by nothing but local interactions between the colloid's particles. Self-assembly has been of major interest in industry, since controlling it would open up a whole host of new technologies, such as smart drug-delivery patches or novel paints that change with light. Scientists have now discovered a technique to control and direct the self-assembly of two different colloids.

This shows two colloids interacting over time in relation to temperature.
Credit: Giuseppe Foffi, EPFL

A colloid is a substance spread out evenly inside another substance. Everyday examples include milk, styrofoam, hair sprays, paints, shaving foam, gels and even dust, mud and fog. One of the most interesting properties of colloids is their ability to self-assemble -- to aggregate spontaneously into well-defined structures, driven by nothing but local interactions between the colloid's particles. Self-assembly has been of major interest in industry, since controlling it would open up a whole host of new technologies, such as smart drug-delivery patches or novel paints that change with light. In a recent Nature Communications publication, scientists from EPFL and the University of Cambridge have discovered a technique to control and direct the self-assembly of two different colloids.

Contrary to solutions that are made up of discrete molecules, colloidal solutions are made up of large particles, dispersed in a liquid solvent. This unusual structure gives colloids unique properties such as Brownian motion (the random zig-zag movement of particles as they collide with the molecules of the dispersion medium), electrophoresis (the unidirectional movement of particles under and electric current) and optical properties such as the Tyndall effect (light entering a colloid scatters and exits as a different color). It is because of such properties that colloids are so commonplace in everyday life; but one particular property holds special interest: self-assembly.

Self-assembly refers to the ability of a colloid's particles to spontaneously form a kind of stable structural arrangement as a result of the shape and direction of the colloid's particles as they interact with the dispersal medium. Although no external force is required, self-assembly generally takes place as a response to a change in an environmental factor such as temperature, light, etc. In biological colloids like DNA, proteins and other macromolecules, self-assembly is usually the first step to self-organization, which underlies many cellular structures. But in terms of technology, self-assembling colloids could have a wide range of applications, fuelling much research in the field.

But what about self-assembly of two -- or more -- species of different colloids? This is the question addressed by Giuseppe Foffi's group at EPFL, working in collaboration with Erika Eiser's group at the University of Cambridge. The scientists showed that when the interactions between the particles of two different colloids are carefully designed, they result in the formation of new structures. Specifically, they have discovered a ways to obtain self-assembled structures that depend strongly on temperature changes. Giuseppe Foffi says: "In a sense, the new structures have a 'memory' of their preparation history."

Using DNA-coated colloids, the group of Erika Eiser was able to control the self-assembling progress between two different colloidal species. Fluorescent polystyrene spheres were coated with different DNA strands (giving them a 'hairy' appearance) that acted as means of particle interaction and can be used to characterize the different species. The advantage of using DNA strands was that the interactions between the particles could be programed using the compatibility of the DNA sequences. Another very interesting property is their responsiveness to sharp changes in temperature, offering a high degree in specificity and programmability. The two species of colloids were mixed together in a 'binary mixture' where one could aggregate faster, therefore creating a structural 'scaffold' for the other to assemble upon.

By exploiting the selectivity of DNA base-pairing, supported by simulation studies by the EPFL group, the scientists found that they could achieve an unprecedented control of the morphology of the interacting colloids. By gathering data about the system's morphology and the dynamics of particle interactions, the authors concluded that this approach is not restricted to nano-scale objects like other methods, but can be applied to the entire range of colloidal sizes. In addition, they foresee that this method can have a number of applications, for example light-reacting paints or smart patches that respond to changes in the body's temperature or pH by releasing particles filled with a drug like an antibiotic or antipyretic.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lorenzo Di Michele, Francesco Varrato, Jurij Kotar, Simon H. Nathan, Giuseppe Foffi, Erika Eiser. Multistep kinetic self-assembly of DNA-coated colloids. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3007

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "DNA brings materials to life: DNA-coated colloids help create novel self-assembling materials." ScienceDaily. ScienceDaily, 13 June 2013. <www.sciencedaily.com/releases/2013/06/130613104426.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2013, June 13). DNA brings materials to life: DNA-coated colloids help create novel self-assembling materials. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2013/06/130613104426.htm
Ecole Polytechnique Fédérale de Lausanne. "DNA brings materials to life: DNA-coated colloids help create novel self-assembling materials." ScienceDaily. www.sciencedaily.com/releases/2013/06/130613104426.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) — The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) — The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins