Featured Research

from universities, journals, and other organizations

Using math to kill cancer cells

Date:
June 14, 2013
Source:
Ottawa Hospital Research Institute
Summary:
Scientists have outlined how advanced mathematical modelling can be used in the fight against cancer. The technique predicts how different treatments and genetic modifications might allow cancer-killing, oncolytic viruses to overcome the natural defences that cancer cells use to stave off viral infection.

Here's a good reason to pay attention in math class. Today Nature Communications has published a paper from Ottawa researchers outlining how advanced mathematical modelling can be used in the fight against cancer. The technique predicts how different treatments and genetic modifications might allow cancer-killing, oncolytic viruses to overcome the natural defences that cancer cells use to stave off viral infection.

"Oncolytic viruses are special in that they specifically target cancer cells," explains Dr. Bell, a senior scientist at the Ottawa Hospital Research Institute and professor at the University of Ottawa's Faculty of Medicine. "Unfortunately, cancer is a very complicated and diverse disease, and some viruses work well in some circumstances and not well in others. As a result, there has been a lot of effort in trying to modify the viruses to make them safe, so they don't target healthy tissue and yet are more efficient in eliminating cancer cells."

Dr. Bell and co-author Dr. Mads Kaern, an assistant professor in the University of Ottawa's Faculty of Medicine and Canada Research Chair at the University's Ottawa Institute of Systems Biology, led a team that has used mathematical modelling to devise strategies for making cancer cells exquisitely sensitive to virus infection -- killing them without affecting normal, healthy cells.

"By using these mathematical models to predict how viral modifications would actually impact cancer cells and normal cells, we are able to accelerate the pace of research," says Dr. Kaern, who is also cross-appointed to the University's Department of Physics. "It allows us to quickly identify the most promising approaches to be tested in the lab, something that is usually done through expensive and time-consuming trial and error."

Drs. Bell and Kaern have established a mathematical model that described an infection cycle, including the way a virus replicated, spread and activated cellular defense mechanisms. From there, they used knowledge about key physiological differences between normal cells and cancer cells to identify how modifying the genome of the virus might counter the anti-viral defenses of cancer cells. Model simulations were remarkably accurate, with the identified viral modifications efficiently eradicating cancer in a mouse model of the disease.

"What is remarkable is how well we could actually predict the experimental outcome based on computational analysis," says Dr. Bell. "This work creates a useful framework for developing similar types of mathematical models in the fight against cancer."

The research, funded by an innovation grant from the Canadian Cancer Society, is only the beginning, explains Dr. Kaern. "We worked with a specific kind of cancer cell. We will now expand that to look at other cancer cell types and see to what degree the predictions we made in one special case can be generalized to others, and to identify strategies to target other types of cancer cells."

The findings may also help researchers better understand the interaction between these cancer cells and the virus. While one magic cure-all will likely never happen due to cancer's complexity, the researchers have developed a framework where they can learn more about the disease in the cases where the simulations don't match.

"From my perspective, that's the most interesting part," concluded Dr. Kaern. "The most fascinating thing is to challenge existing knowledge represented in a mathematical model and try to understand why these models sometimes fail. It's a very exciting opportunity to be a part of this, and I am glad that our efforts in training students in computational cell biology have resulted in such a significant advancement."


Story Source:

The above story is based on materials provided by Ottawa Hospital Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fabrice Le Bœuf, Cory Batenchuk, Markus Vähä-Koskela, Sophie Breton, Dominic Roy, Chantal Lemay, Julie Cox, Hesham Abdelbary, Theresa Falls, Girija Waghray, Harold Atkins, David Stojdl, Jean-Simon Diallo, Mads Kærn, John C. Bell. Model-based rational design of an oncolytic virus with improved therapeutic potential. Nature Communications, 2013; 4 DOI: 10.1038/ncomms2974

Cite This Page:

Ottawa Hospital Research Institute. "Using math to kill cancer cells." ScienceDaily. ScienceDaily, 14 June 2013. <www.sciencedaily.com/releases/2013/06/130614082643.htm>.
Ottawa Hospital Research Institute. (2013, June 14). Using math to kill cancer cells. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/06/130614082643.htm
Ottawa Hospital Research Institute. "Using math to kill cancer cells." ScienceDaily. www.sciencedaily.com/releases/2013/06/130614082643.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) — Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) — America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) — A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins