Featured Research

from universities, journals, and other organizations

Large-scale quantum chip validated: Prototype quantum optimization chip operates as hoped

Date:
June 28, 2013
Source:
University of Southern California
Summary:
A team of scientists has verified that quantum effects are indeed at play in the first commercial quantum optimization processor.

A team of scientists at USC has verified that quantum effects are indeed at play in the first commercial quantum optimization processor.

The team demonstrated that the D-Wave processor housed at the USC-Lockheed Martin Quantum Computing Center behaves in a manner that indicates that quantum mechanics plays a functional role in the way it works. The demonstration involved a small subset of the chip's 128 qubits.

This means that the device appears to be operating as a quantum processor -- something that scientists had hoped for but have needed extensive testing to verify.

The quantum processor was purchased from Canadian manufacturer D-Wave nearly two years ago by Lockheed Martin and housed at the USC Viterbi Information Sciences Institute (ISI). As the first of its kind, the task for scientists putting it through its paces was to determine whether the quantum computer was operating as hoped.

"Using a specific test problem involving eight qubits we have verified that the D-Wave processor performs optimization calculations (that is, finds lowest energy solutions) using a procedure that is consistent with quantum annealing and is inconsistent with the predictions of classical annealing," said Daniel Lidar, scientific director of the Quantum Computing Center and one of the researchers on the team, who holds joint appointments with the USC Viterbi School of Engineering and the USC Dornsife College of Letters, Arts and Sciences.

Quantum annealing is a method of solving optimization problems using quantum mechanics -- at a large enough scale, potentially much faster than a traditional processor can.

Research institutions throughout the world build and use quantum processors, but most only have a few quantum bits, or "qubits."

Qubits have the capability of encoding the two digits of one and zero at the same time -- as opposed to traditional bits, which can encode distinctly either a one or a zero. This property, called "superposition," along with the ability of quantum states to "tunnel" through energy barriers, are hoped to play a role in helping future generations of the D-Wave processor to ultimately perform optimization calculations much faster than traditional processors.

With 108 functional qubits, the D-Wave processor at USC inspired hopes for a significant advance in the field of quantum computing when it was installed in October 2011 -- provided it worked as a quantum information processor. Quantum processors can fall victim to a phenomenon called "decoherence," which stifles their ability to behave in a quantum fashion.

The USC team's research shows that the chip, in fact, performed largely as hoped, demonstrating the potential for quantum optimization on a larger-than-ever scale.

"Our work seems to show that, from a purely physical point of view, quantum effects play a functional role in information processing in the D-Wave processor," said Sergio Boixo, first author of the research paper, who conducted the research while he was a computer scientist at ISI and research assistant professor at the USC Viterbi School of Engineering.

Boixo and Lidar collaborated with Tameem Albash, postdoctoral research associate in physics at USC Dornsife; Federico M. Spedalieri, computer scientist at ISI; and Nicholas Chancellor, a recent physics graduate at USC Dornsife. Their findings will be published in Nature Communications on June 28.

The news comes just two months after the Quantum Computing Center's original D-Wave processor -- known commercially as the "Rainier" chip -- was upgraded to a new 512-qubit "Vesuvius" chip. The Quantum Computing Center, which includes a magnetically shielded box that is kept frigid (near absolute zero) to protect the computer against decoherence, was designed to be upgradable to keep up with the latest developments in the field.

The new Vesuvius chip at USC is currently the only one in operation outside of D-Wave. A second such chip, owned by Google and housed at NASA's Ames Research Center in Moffett Field, California, is expected to become operational later this year.

Next, the USC team will take the Vesuvius chip for a test drive, putting it through the same paces as the Rainier chip.

This research was supported by the Lockheed Martin Corporation; U.S. Army Research Office grant number W911NF-12-1-0523; National Science Foundation grant number CHM-1037992, ARO Multidisciplinary University Research Initiative grant W911NF-11-1-026.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sergio Boixo, Tameem Albash, Federico M. Spedalieri, Nicholas Chancellor, Daniel A. Lidar. Experimental signature of programmable quantum annealing. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3067

Cite This Page:

University of Southern California. "Large-scale quantum chip validated: Prototype quantum optimization chip operates as hoped." ScienceDaily. ScienceDaily, 28 June 2013. <www.sciencedaily.com/releases/2013/06/130628131027.htm>.
University of Southern California. (2013, June 28). Large-scale quantum chip validated: Prototype quantum optimization chip operates as hoped. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/06/130628131027.htm
University of Southern California. "Large-scale quantum chip validated: Prototype quantum optimization chip operates as hoped." ScienceDaily. www.sciencedaily.com/releases/2013/06/130628131027.htm (accessed September 17, 2014).

Share This



More Computers & Math News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Let's Review Apple's Latest iPhone Reviews

Let's Review Apple's Latest iPhone Reviews

Newsy (Sep. 17, 2014) The tech press has shared its thoughts on the latest iterations of Apple's iPhone. We summarize the reactions to help you decide: iPhone 6 or 6 Plus? Video provided by Newsy
Powered by NewsLook.com
2K Drafts Face-Mapping Tech for New Game

2K Drafts Face-Mapping Tech for New Game

AP (Sep. 17, 2014) "NBA 2K15" is angling for a slam dunk with an innovative new way to put players in the game. Gamers will be able to digitally graft lifelike 3D renditions of their faces onto virtual players using the PlayStation 4 and Xbox One cameras. (Sept. 17) Video provided by AP
Powered by NewsLook.com
FBI Finishes $1 Billion Facial Recognition System

FBI Finishes $1 Billion Facial Recognition System

Newsy (Sep. 15, 2014) The FBI announced it plans to make its Next Generation Identification System available to law enforcement, but some privacy advocates are worried. Video provided by Newsy
Powered by NewsLook.com
A+ for Apple iPhone Pre-Sales

A+ for Apple iPhone Pre-Sales

Reuters - Business Video Online (Sep. 15, 2014) Apple says it received a record 4 million first-day pre-orders for its new iPhone 6 and iPhone 6 Plus, pushing delivery dates into October. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins