Featured Research

from universities, journals, and other organizations

Researchers identify 'switch' for long-term memory

Date:
July 8, 2013
Source:
Heidelberg, Universität
Summary:
Neurobiologists have identified calcium in the cell nucleus to be a cellular "switch" responsible for the formation of long-term memory. Using the fruit fly as a model, scientists investigate how the brain learns. The researchers wanted to know which signals in the brain were responsible for building long-term memory and for forming the special proteins involved.

Neurobiologists at Heidelberg University have identified calcium in the cell nucleus to be a cellular "switch" responsible for the formation of long-term memory. Using the fruit fly Drosophila melanogaster as a model, the team led by Prof. Dr. Christoph Schuster and Prof. Dr. Hilmar Bading investigates how the brain learns. The researchers wanted to know which signals in the brain were responsible for building long-term memory and for forming the special proteins involved.

The results of the research were published in the journal Science Signaling.

The team from the Interdisciplinary Center for Neurosciences (IZN) measured nuclear calcium levels with a fluorescent protein in the association and learning centres of the insect's brain to investigate any changes that might occur during the learning process. Their work on the fruit fly revealed brief surges in calcium levels in the cell nuclei of certain neurons during learning. It was this calcium signal that researchers identified as the trigger of a genetic programme that controls the production of "memory proteins." If this nuclear calcium switch is blocked, the flies are unable to form long-term memory.

Prof. Schuster explains that insects and mammals separated evolutionary paths approximately 600 million years ago. In spite of this sizable gap, certain vitally important processes such as memory formation use similar cellular mechanisms in humans, mice and flies, as the researchers' experiments were able to prove. "These commonalities indicate that the formation of long-term memory is an ancient phenomenon already present in the shared ancestors of insects and vertebrates. Both species probably use similar cellular mechanisms for forming long-term memory, including the nuclear calcium switch," Schuster continues.

The IZN researchers assume that similar switches based on nuclear calcium signals may have applications in other areas -- presumably whenever organisms need to adapt to new conditions over the long term. "Pain memory, for example, or certain protective and survival functions of neurons use this nuclear calcium switch, too," says Prof. Bading. This cellular switch may no longer work as well in the elderly, which Bading believes may explain the decline in memory typically observed in old age. Thus, the discoveries by the Heidelberg neurobiologists open up new perspectives for the treatment of age- and illness-related changes in brain functions.


Story Source:

The above story is based on materials provided by Heidelberg, Universität. Note: Materials may be edited for content and length.


Journal Reference:

  1. J.-M. Weislogel, C. P. Bengtson, M. K. Muller, J. N. Hortzsch, M. Bujard, C. M. Schuster, H. Bading. Requirement for Nuclear Calcium Signaling in Drosophila Long-Term Memory. Science Signaling, 2013; 6 (274): ra33 DOI: 10.1126/scisignal.2003598

Cite This Page:

Heidelberg, Universität. "Researchers identify 'switch' for long-term memory." ScienceDaily. ScienceDaily, 8 July 2013. <www.sciencedaily.com/releases/2013/07/130708143055.htm>.
Heidelberg, Universität. (2013, July 8). Researchers identify 'switch' for long-term memory. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2013/07/130708143055.htm
Heidelberg, Universität. "Researchers identify 'switch' for long-term memory." ScienceDaily. www.sciencedaily.com/releases/2013/07/130708143055.htm (accessed April 19, 2014).

Share This



More Mind & Brain News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) — The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) — A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) — Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins