Featured Research

from universities, journals, and other organizations

In baseball, bigger still better: Elite pitchers continue to be taller and thus throw faster

Date:
July 8, 2013
Source:
Duke University
Summary:
What unites golf, baseball and hockey is the "falling forward" motion involved, whether it is a pitcher's arm or golfer's swing. Basically, the larger and taller the athlete, the more force he or she can bring to bear as his or her mass falls forward. A new theory predicts that elite pitchers will continue to be taller and thus throw faster and seems also to apply to athletes who compete in golf, hockey and boxing.

This is Adrian Bejan.
Credit: Duke University Photography

Max Scherzer leads Major League Baseball in wins. As a pitcher for the Detroit Tigers, he hasn't lost a game this season.

Related Articles


His 6-foot, 3-inch frame is a telling example of constructal-law theory, said Duke University engineer Adrian Bejan. The theory predicts that elite pitchers will continue to be taller and thus throw faster and seems also to apply to athletes who compete in golf, hockey and boxing.

Studying athletes -- since most sports are meticulous in keeping statistics -- provides an insight into the biological evolution of human design in nature, which Bejan terms the constructal-law theory.

Bejan has already demonstrated that runners and swimmers have gotten bigger and taller over the past century. Now he's applying his theories to other sports, including team sports. In those cases, forward momentum was a major factor in the athletes' successes.

What unites golf, baseball and hockey is the "falling forward" motion involved, whether it is a pitcher's arm or golfer's swing. Basically, the larger and taller the athlete, the more force he or she can bring to bear as his or her mass falls forward, Bejan said.

The results of his analyses were published online in the International Journal of Design & Nature and Ecodynamics.

"Our analysis shows that the constructal-law theory of sports evolution predicts and unites not only speed running and speed swimming, but also the sports where speed is needed for throwing a mass, ball or fist," Bejan said. "The sports of baseball, golf, hockey and boxing bring both the team and the individual sports under the predictive reach of the constructal theory of sports evolution."

The falling forward idea states that the larger and taller the individual, the more force can be applied as the ball is hurled forward. For example, former major leaguer Randy Johnson, a 6-foot, 10-inch pitcher, was a terror to batters during his career, notching two no-hitters, five Cy Young awards for best pitcher and the record for strikeouts by a lefthander.

"According to the constructal law predictions, the larger and taller machine, like medieval trebuchets, is capable of hurling a large mass farther and faster," Bejan said. "The other players on the baseball field do not have to throw a ball as fast, so they tend to be shorter than pitchers, but they too evolve toward more height over time. For pitchers, in particular, height means speed."

In golf, despite the advances in ball and club design, taller competitors have been driving the ball farther than shorter golfers. In 2010, Bejan found the average golfer in the top 10 of driving distance was on average 2.5 inches taller than the average golfer in the bottom 10 of driving distance.

"This shows that height plays a definite role in the success of an athlete in golf," Bejan said. "The increase in driving distance with body mass is due to the fact that larger moving bodies are capable of exerting greater forces. Also, the increased size of clubheads has had a distinct affect on the game. The average driving distance on the Professional Golfers Association (PGA) tour has risen 30 yards in the past 30 years."

The same reasoning also applies to sports equipment, such as golf clubs and hockey sticks. Just as golf clubs have become lighter and more flexible to increase speed of swing, and thus distance, so have hockey sticks, Bejan said.

In terms of boxing, Bejan notes similar trends, even though boxers are classified and compete in specific weight classes. While height and arm reach help boxers, they cannot be too tall, because then they lose core strength, which lessens the falling forward force that powers the punches.

"We looked at the 25 greatest fighters in the lightweight and welterweight classes and found that these boxers have been able to maximize punching power by gaining size without going over weight limits," Bejan said. "They have done this by adding muscle and cutting water weight before a fight, and these techniques over time provide an explanation for the improvement in boxers' size and knockout rates."

The work of Bejan's group was performed during the course "Constructal Theory and Design," developed at Duke with the support of the National Science Foundation. Other members of the team were Duke's Sylvie Lorente, James Royce, Dave Faurie, Tripp Parran, Michael Black and Brian Ash.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "In baseball, bigger still better: Elite pitchers continue to be taller and thus throw faster." ScienceDaily. ScienceDaily, 8 July 2013. <www.sciencedaily.com/releases/2013/07/130708161943.htm>.
Duke University. (2013, July 8). In baseball, bigger still better: Elite pitchers continue to be taller and thus throw faster. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/07/130708161943.htm
Duke University. "In baseball, bigger still better: Elite pitchers continue to be taller and thus throw faster." ScienceDaily. www.sciencedaily.com/releases/2013/07/130708161943.htm (accessed October 25, 2014).

Share This



More Science & Society News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Science & Society

Business & Industry

Education & Learning

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins