Featured Research

from universities, journals, and other organizations

New mode of cellular communication discovered in the brain

Date:
July 16, 2013
Source:
Universität Mainz
Summary:
Researchers have discovered a new form of communication between different cell types in the brain. Nerve cells interact with neighboring glial cells, which results in a transfer of protein and genetic information. Nerve cells are thus protected against stressful growth conditions.

The JGU researchers were able to show that exosomes are absorbed by the nerve cells and thus help protect these against stress.
Credit: Ill.: Institute of Molecular Cell Biology, JGU

Researchers at Johannes Gutenberg University Mainz (JGU) have discovered a new form of communication between different cell types in the brain. Nerve cells interact with neighboring glial cells, which results in a transfer of protein and genetic information. Nerve cells are thus protected against stressful growth conditions. The study undertaken by the Mainz-based cell biologists shows how reciprocal communication between the different cell types contributes to neuronal integrity.

Related Articles


Their results have been recently published in the journal PLOS Biology.

Brain function is determined by the communication between electrically excitable neurons and the surrounding glial cells, which perform many tasks in the brain. Oligodendrocytes are a type of glial cell and these form an insulating myelin sheath around the axons of neurons. In addition to providing this protective insulation, oligodendrocytes also help sustain neurons in other ways that are not yet fully understood. If this support becomes unavailable, axons can die off. This is what happens in many forms of myelin disorders, such as multiple sclerosis, and it results in a permanent loss of neuron impulse transmission.

Like other types of cell, oligodendrocytes also secrete small vesicles. In addition to lipids and proteins, these membrane-enclosed transport packages also contain ribonucleic acids, in other words, genetic information. In their study, Carsten Frühbeis, Dominik Fröhlich, and Wen Ping Kuo of the Institute of Molecular Cell Biology at Johannes Gutenberg University Mainz found that oligodendrocytes release nano-vesicles known as 'exosomes' in response to neuronal signals. These exosomes are taken up by the neurons and their cargo can then be used for neuronal metabolism. "This works on a kind of 'delivery on call' principle," explained Dr. Eva-Maria Krämer-Albers, who is leading the current study. "We believe that what are being delivered are 'care packages' that are sent by the oligodendrocytes to neurons."

While studying cell cultures, the research group discovered that the release of exosomes is triggered by the neurotransmitter glutamate. By means of labeling them with reporter enzymes, the researchers were able to elegantly demonstrate that the small vesicles are absorbed into the interior of the neurons. "The entire package of substances, including the genetic information, is apparently utilized by the neurons," said Krämer-Albers. If neurons are subjected to stress, cells that have been aided with 'care packages' subsequently recover. "This maintenance contributes to the protection of the neurons and probably also leads to de novo synthesis of proteins," stated Carsten Frühbeis and Dominik Fröhlich. Among the substances that are present in the exosomes and are channeled to the neurons are, for instance, protective proteins such as heat shock proteins, glycolytic enzymes, and enzymes which counter oxidative stress.

The study has demonstrated that exosomes from oligodendrocytes participate in a previously unknown form of bidirectional cell communication that could play a significant role in the long-term preservation of nerve fibers. "An interaction like this, in which an entire package of substances including genetic information is exchanged between cells of the nervous system, has not previously been observed," stated Krämer-Albers, summarizing the results. "Exosomes are thus similar to viruses in certain respects, with the major difference that they do not inflict damage on the target cells but are instead beneficial." In the future, the researchers hope to develop exosomes as possible 'cure' packages that could be used in the treatment of nerve disorders.


Story Source:

The above story is based on materials provided by Universität Mainz. Note: Materials may be edited for content and length.


Journal Reference:

  1. Carsten Frühbeis, Dominik Fröhlich, Wen Ping Kuo, Jesa Amphornrat, Sebastian Thilemann, Aiman S. Saab, Frank Kirchhoff, Wiebke Möbius, Sandra Goebbels, Klaus-Armin Nave, Anja Schneider, Mikael Simons, Matthias Klugmann, Jacqueline Trotter, Eva-Maria Krämer-Albers. Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte–Neuron Communication. PLoS Biology, 2013; 11 (7): e1001604 DOI: 10.1371/journal.pbio.1001604

Cite This Page:

Universität Mainz. "New mode of cellular communication discovered in the brain." ScienceDaily. ScienceDaily, 16 July 2013. <www.sciencedaily.com/releases/2013/07/130716075536.htm>.
Universität Mainz. (2013, July 16). New mode of cellular communication discovered in the brain. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/07/130716075536.htm
Universität Mainz. "New mode of cellular communication discovered in the brain." ScienceDaily. www.sciencedaily.com/releases/2013/07/130716075536.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins