Science News

... from universities, journals, and other research organizations

Drug Research: New Technique Shows If Drugs Have Reached Intended Target

July 18, 2013 — The search for new drugs, including those for cancer, is set to speed up thanks to a new research technique invented by scientists at the Nanyang Technological University (NTU).


Share This:

Named the "Cellular Thermal Shift Assay" (CETSA), scientists can now know for sure if a drug had reached its target protein in the body, which is a critical step in determining the effectiveness of most medicines.

Presently, scientists can only hypothesise if a drug has indeed reached its target protein, leading to expensive and prolonged drug development process. CETSA will help scientists take out much of the usual trial-and-error guesswork from the drug development equation.

This research breakthrough was recently published in Science.

Most drugs operate by binding to one or more proteins, which 'blocks' the proteins' function. Scientists around the world face two common bottlenecks: how to identify the right proteins to target and how to design drug molecules which are able to efficiently seek out and bind to these proteins.

CETSA's inventor, Professor Pär Nordlund from NTU's School of Biological Sciences, said their new method will not only ease the two bottlenecks, but also has important applications in monitoring a patient's progress, for example, during cancer treatment.

"With CETSA, we can in principle determine which drug and treatment regime is most effective at targeting the proteins in the tumour in cancer patients, and monitor when resistance is developing," says Prof Nordlund.

How CETSA works

When drugs react with target proteins in a cell, the proteins are able to withstand higher temperature before unfolding and precipitating, that is, turning solid. An example of protein precipitation is when liquid egg white (which is protein) is cooked (turning solid) at high heat.

"By heating protein samples and finding out which proteins are 'cooked' and which are left 'uncooked' due it being more heat resistant, we are able to know if the drugs had reached their target cells and if it had caused the desired binding to the proteins, blocking its functions," added Prof Nordlund, who is also a Professor of Biophysics at the Karolinska Institutet.

"With CETSA, costly and challenging drug development cycles can potentially be made more efficient, as the method can be used as a stringent control step at many phases of the process. Other methods are available for indirect measurements of drug binding but they are often less accurate, and CETSA will be a valuable tool to complement these technologies," said the Swedish professor.

This project took Prof Nordlund's team three years and they are now in the process of developing a prototype device.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Nanyang Technological University.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. D. M. Molina, R. Jafari, M. Ignatushchenko, T. Seki, E. A. Larsson, C. Dan, L. Sreekumar, Y. Cao, P. Nordlund. Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay. Science, 2013; 341 (6141): 84 DOI: 10.1126/science.1233606
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Unraveling Brain Tumors

Brain tumor researchers have found that brain tumors arise from cancer stem cells living within tiny protective areas formed by blood vessels in the. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?