Featured Research

from universities, journals, and other organizations

How Mars' atmosphere got so thin: Reports detail Curiosity clues to atmosphere's past

Date:
July 18, 2013
Source:
NASA
Summary:
A pair of new papers report measurements of the Martian atmosphere's composition by NASA's Curiosity rover, providing evidence about loss of much of Mars' original atmosphere.

This picture shows a lab demonstration of the measurement chamber inside the Tunable Laser Spectrometer, an instrument that is part of the Sample Analysis at Mars investigation on NASA's Curiosity rover.
Credit: NASA/JPL-Caltech

A pair of new papers report measurements of the Martian atmosphere's composition by NASA's Curiosity rover, providing evidence about loss of much of Mars' original atmosphere.

Related Articles


Curiosity's Sample Analysis at Mars (SAM) suite of laboratory instruments inside the rover has measured the abundances of different gases and different isotopes in several samples of Martian atmosphere. Isotopes are variants of the same chemical element with different atomic weights due to having different numbers of neutrons, such as the most common carbon isotope, carbon-12, and a heavier stable isotope, carbon-13.

SAM checked ratios of heavier to lighter isotopes of carbon and oxygen in the carbon dioxide that makes up most of the planet's atmosphere. Heavy isotopes of carbon and oxygen are both enriched in today's thin Martian atmosphere compared with the proportions in the raw material that formed Mars, as deduced from proportions in the sun and other parts of the solar system. This provides not only supportive evidence for the loss of much of the planet's original atmosphere, but also a clue to how the loss occurred.

"As atmosphere was lost, the signature of the process was embedded in the isotopic ratio," said Paul Mahaffy of NASA Goddard Space Flight Center, Greenbelt, Md. He is the principal investigator for SAM and lead author of one of the two papers about Curiosity results in the July 19 issue of the journal Science.

Other factors also suggest Mars once had a much thicker atmosphere, such as evidence of persistent presence of liquid water on the planet's surface long ago even though the atmosphere is too scant for liquid water to persist on the surface now. The enrichment of heavier isotopes measured in the dominant carbon-dioxide gas points to a process of loss from the top of the atmosphere -- favoring loss of lighter isotopes -- rather than a process of the lower atmosphere interacting with the ground.

Curiosity measured the same pattern in isotopes of hydrogen, as well as carbon and oxygen, consistent with a loss of a substantial fraction of Mars' original atmosphere. Enrichment in heavier isotopes in the Martian atmosphere has previously been measured on Mars and in gas bubbles inside meteorites from Mars. Meteorite measurements indicate much of the atmospheric loss may have occurred during the first billion years of the planet's 4.6-billion-year history. The Curiosity measurements reported this week provide more precise measurements to compare with meteorite studies and with models of atmospheric loss.

The Curiosity measurements do not directly measure the current rate of atmospheric escape, but NASA's next mission to Mars, the Mars Atmosphere and Volatile Evolution Mission (MAVEN), will do so. "The current pace of the loss is exactly what the MAVEN mission now scheduled to launch in November of this year is designed to determine," Mahaffy said.

The new reports describe analysis of Martian atmosphere samples with two different SAM instruments during the initial 16 weeks of the rover's mission on Mars, which is now in its 50th week. SAM's mass spectrometer and tunable laser spectrometer independently measured virtually identical ratios of carbon-13 to carbon-12. SAM also includes a gas chromatograph and uses all three instruments to analyze rocks and soil, as well as atmosphere.

"Getting the same result with two very different techniques increased our confidence that there's no unknown systematic error underlying the measurements," said Chris Webster of NASA's Jet Propulsion Laboratory, Pasadena, Calif. He is the lead scientist for the tunable laser spectrometer and the lead author for one of the two papers. "The accuracy in these new measurements improves the basis for understanding the atmosphere's history."

Curiosity landed inside Mars' Gale Crater on Aug. 6, 2012 Universal Time (on Aug. 5 PDT). The rover this month began a drive of many months from an area where it found evidence for a past environment favorable for microbial life, toward a layered mound, Mount Sharp, where researchers will seek evidence about how the environment changed.

More information about Curiosity is online at: http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl/ .

You can follow the mission on Facebook at: http://www.facebook.com/marscuriosity and on Twitter at http://www.twitter.com/marscuriosity .


Story Source:

The above story is based on materials provided by NASA. Note: Materials may be edited for content and length.


Journal References:

  1. C. R. Webster, P. R. Mahaffy, G. J. Flesch, P. B. Niles, J. H. Jones, L. A. Leshin, S. K. Atreya, J. C. Stern, L. E. Christensen, T. Owen, H. Franz, R. O. Pepin, A. Steele. Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere. Science, 2013; 341 (6143): 260 DOI: 10.1126/science.1237961
  2. Paul R. Mahaffy, Christopher R. Webster, Sushil K. Atreya, Heather Franz, Michael Wong, Pamela G. Conrad, Dan Harpold, John J. Jones, Laurie A. Leshin, Heidi Manning, Tobias Owen, Robert O. Pepin, Steven Squyres, Melissa Trainer, and MSL Science Team. Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013; 341 (6143): 263 DOI: 10.1126/science.1237966

Cite This Page:

NASA. "How Mars' atmosphere got so thin: Reports detail Curiosity clues to atmosphere's past." ScienceDaily. ScienceDaily, 18 July 2013. <www.sciencedaily.com/releases/2013/07/130718143020.htm>.
NASA. (2013, July 18). How Mars' atmosphere got so thin: Reports detail Curiosity clues to atmosphere's past. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2013/07/130718143020.htm
NASA. "How Mars' atmosphere got so thin: Reports detail Curiosity clues to atmosphere's past." ScienceDaily. www.sciencedaily.com/releases/2013/07/130718143020.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Space & Time News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins