Featured Research

from universities, journals, and other organizations

Microchips that mimic the brain: Novel microchips imitate the brain's information processing in real time

Date:
July 22, 2013
Source:
University of Zurich
Summary:
Neuroinformatics researchers have demonstrated how complex cognitive abilities can be incorporated into electronic systems made with so-called neuromorphic chips: They show how to assemble and configure these electronic systems to function in a way similar to an actual brain.

Brain symbol on computer chip (stock image). Researchers have demonstrated how complex cognitive abilities can be incorporated into electronic systems made with so-called neuromorphic chips.
Credit: Nikolai Sorokin / Fotolia

Novel microchips imitate the brain's information processing in real time. Neuroinformatics researchers from the University of Zurich and ETH Zurich together with colleagues from the EU and US demonstrate how complex cognitive abilities can be incorporated into electronic systems made with so-called neuromorphic chips: They show how to assemble and configure these electronic systems to function in a way similar to an actual brain.

No computer works as efficiently as the human brain -- so much so that building an artificial brain is the goal of many scientists. Neuroinformatics researchers from the University of Zurich and ETH Zurich have now made a breakthrough in this direction by understanding how to configure so-called neuromorphic chips to imitate the brain's information processing abilities in real-time. They demonstrated this by building an artificial sensory processing system that exhibits cognitive abilities.

New approach: simulating biological neurons

Most approaches in neuroinformatics are limited to the development of neural network models on conventional computers or aim to simulate complex nerve networks on supercomputers. Few pursue the Zurich researchers' approach to develop electronic circuits that are comparable to a real brain in terms of size, speed, and energy consumption. "Our goal is to emulate the properties of biological neurons and synapses directly on microchips," explains Giacomo Indiveri, a professor at the Institute of Neuroinformatics (INI), of the University of Zurich and ETH Zurich.

The major challenge was to configure networks made of artificial, i.e. neuromorphic, neurons in such a way that they can perform particular tasks, which the researchers have now succeeded in doing: They developed a neuromorphic system that can carry out complex sensorimotor tasks in real time. They demonstrate a task that requires a short-term memory and context-dependent decision-making -- typical traits that are necessary for cognitive tests. In doing so, the INI team combined neuromorphic neurons into networks that implemented neural processing modules equivalent to so-called "finite-state machines" -- a mathematical concept to describe logical processes or computer programs. Behavior can be formulated as a "finite-state machine" and thus transferred to the neuromorphic hardware in an automated manner. "The network connectivity patterns closely resemble structures that are also found in mammalian brains," says Indiveri.

Chips can be configured for any behavior modes

The scientists thus demonstrate for the first time how a real-time hardware neural-processing system where the user dictates the behavior can be constructed. "Thanks to our method, neuromorphic chips can be configured for a large class of behavior modes. Our results are pivotal for the development of new brain-inspired technologies," Indiveri sums up. One application, for instance, might be to combine the chips with sensory neuromorphic components, such as an artificial cochlea or retina, to create complex cognitive systems that interact with their surroundings in real time.


Story Source:

The above story is based on materials provided by University of Zurich. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, R. J. Douglas. Synthesizing cognition in neuromorphic electronic systems. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1212083110

Cite This Page:

University of Zurich. "Microchips that mimic the brain: Novel microchips imitate the brain's information processing in real time." ScienceDaily. ScienceDaily, 22 July 2013. <www.sciencedaily.com/releases/2013/07/130722152705.htm>.
University of Zurich. (2013, July 22). Microchips that mimic the brain: Novel microchips imitate the brain's information processing in real time. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2013/07/130722152705.htm
University of Zurich. "Microchips that mimic the brain: Novel microchips imitate the brain's information processing in real time." ScienceDaily. www.sciencedaily.com/releases/2013/07/130722152705.htm (accessed April 20, 2014).

Share This



More Mind & Brain News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins