Featured Research

from universities, journals, and other organizations

Valley networks suggest ancient snowfall on Mars

Date:
July 23, 2013
Source:
Brown University
Summary:
Researchers have shown that some Martian valleys appear to have been caused by runoff from orographic precipitation -- moisture carried part of the way up a mountain and deposited on the slopes. The findings help to answer the question of whether water flowing on ancient Mars bubbled up from the ground or fell down from the atmosphere.

Mars from the Odyssey spacecraft Water-carved valleys on Mars appear to have been caused by runoff from precipitation, likely meltwater from snow. Early Martian precipitation would have fallen on mountainsides and crater rims.
Credit: NASA

Researchers at Brown University have shown that some Martian valleys appear to have been caused by runoff from orographic precipitation -- moisture carried part of the way up a mountain and deposited on the slopes. Valley networks branching across the Martian surface leave little doubt that water once flowed on the Red Planet. But where that ancient water came from -- whether it bubbled up from underground or fell as rain or snow -- is still debated by scientists. A new study by researchers at Brown University puts a new check mark in the precipitation column.

Related Articles


The study finds that water-carved valleys at four different locations on Mars appear to have been caused by runoff from orographic precipitation -- snow or rain that falls when moist prevailing winds are pushed upward by mountain ridges. The new findings are the most detailed evidence yet of an orographic effect on ancient Mars and could shed new light on the planet's early climate and atmosphere.

A paper describing the work has been accepted by Geophysical Research Letters and published online in June.

Kat Scanlon, a geological sciences graduate student at Brown, led the research and is well-acquainted with the orographic effect. She did graduate work in meteorology in Hawaii, which is home to a quintessential orographic pattern. Moist tropical winds from the east are pushed upward when they hit the mountains of Hawaii's big island. The winds lack the kinetic energy to reach the mountain summit, so they dump their moisture on the eastern side of the island, making parts of it a tropical jungle. The western side, in contrast, is nearly a desert because it sits in a rain shadow cast by the mountain peak.

Additional modeling might determine how fast Martian snow could have melted and whether snowmelt alone could have carved the valleys.Scanlon thought similar orographic patterns might have been at play on early Mars and that the valley networks might be an indicator. "That's what immediately came to mind in trying to figure out if these valleys on Mars are precipitation related," she said.

The researchers, including Jim Head, professor of geological sciences, started by identifying four locations where valley networks were found along tall mountain ridges or raised crater rims. To establish the direction of the prevailing winds at each location, the researchers used a newly developed general circulation model (GCM) for Mars. The model simulates air movement based on the gas composition scientists think was present in the early Mars atmosphere. Next, the team used a model of orographic precipitation to determine where, given the prevailing winds from the GCM, precipitation would be likely to fall in each of the study areas.

Their simulations showed that precipitation would have been heaviest at the heads of the densest valley networks. "Their drainage density varies in the way you would expect from the complex response of precipitation to topography," Scanlon said. "We were able to confirm that in a pretty solid way."

The atmospheric parameters used in the GCM are based on a new comprehensive general circulation model that predicts a cold climate, so the precipitation modeled in this study was snow. But this snow could have been melted by episodic warming conditions to form the valley networks, and indeed some precipitation could have been rain during this period, Scanlon and Head say.

"The next step is to do some snowmelt modeling," she said. "The question is how fast can you melt a giant snowbank. Do you need rain? Is it even possible to get enough discharge [to carve the valleys] with just the snowmelt?"

With the knowledge from this study that precipitation was important in carving the valleys, the answers to those additional questions could provide important insight into the climate on Mars billions of years ago.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kathleen E. Scanlon, James W. Head, Jean-Baptiste Madeleine, Robin D. Wordsworth, Franηois Forget. Orographic precipitation in valley network headwaters: Constraints on the ancient Martian atmosphere. Geophysical Research Letters, 2013; DOI: 10.1002/grl.50687

Cite This Page:

Brown University. "Valley networks suggest ancient snowfall on Mars." ScienceDaily. ScienceDaily, 23 July 2013. <www.sciencedaily.com/releases/2013/07/130723155046.htm>.
Brown University. (2013, July 23). Valley networks suggest ancient snowfall on Mars. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2013/07/130723155046.htm
Brown University. "Valley networks suggest ancient snowfall on Mars." ScienceDaily. www.sciencedaily.com/releases/2013/07/130723155046.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Space & Time News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) — More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) — NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Geminids Meteor Shower Lights Up Skies in China

Geminids Meteor Shower Lights Up Skies in China

AFP (Dec. 16, 2014) — The Geminids meteor shower lights up the skies over the Changbai Mountains in northeast China. Duration: 01:03 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins