Featured Research

from universities, journals, and other organizations

Solar system's youth gives clues to planet search

Date:
July 24, 2013
Source:
Carnegie Institution
Summary:
Comets and meteorites contain clues to our solar system's earliest days. But some of the findings are puzzle pieces that don't seem to fit well together. A new set of theoretical models shows how an outburst event in the Sun's formative years could explain some of this disparate evidence. The research could have implications for the hunt for habitable planets outside of our solar system.

Modeling results show where the injected gas and dust ended ups only 34 years after being injected at the disk’s surface. It was injected 9 astronomical units from the central prostar and is now in the disk’s midplane. The outer edge shown is 10 astronomical units from the central prostar. Mixing and transport are still underway and the underlying spiral arms that drive the mixing and transport can be seen.
Credit: Image courtesy of Alan Boss

Comets and meteorites contain clues to our solar system's earliest days. But some of the findings are puzzle pieces that don't seem to fit well together. A new set of theoretical models from Carnegie's Alan Boss shows how an outburst event in the Sun's formative years could explain some of this disparate evidence. His work could have implications for the hunt for habitable planets outside of our solar system.

The research is published by The Astrophysical Journal.

One way to study the solar system's formative period is to look for samples of small crystalline particles that were formed at high temperatures but now exist in icy comets. Another is to analyze the traces of isotopes -- versions of elements with the same number of protons, but a different number of neutrons -- found in primitive meteorites. These isotopes decay and turn into different, so-called daughter, elements. The initial abundances of these isotopes tell researchers where the isotopes may have come from, and can give clues as to how they traveled around the early solar system.

Stars are surrounded by disks of rotating gas during the early stages of their lives. Observations of young stars that still have these gas disks demonstrate that sun-like stars undergo periodic bursts, lasting about 100 years each, during which mass is transferred from the disk to the young star. But analysis of particles and isotopes from comets and meteorites present a mixed picture of solar system formation, more complicated than just a one-way movement of matter from the disk to the star.

The heat-formed crystalline grains found in icy comets imply significant mixing and outward movement of matter from close to the star to the outer edges of the solar system. Some isotopes, such as aluminum, support this view. However, isotopes of the element oxygen seem to paint a different picture.

Boss' new model demonstrates how a phase of marginal gravitational instability in the gas disk surrounding a proto-sun, leading to an outburst phase, can explain all of these findings. The results are applicable to stars with a variety of masses and disk sizes. According to the model, the instability can cause a relatively rapid transportation of matter between the star and the gas disk, where matter is moved both inward and outward. This accounts for the presence of heat-formed crystalline particles in comets from the solar system's outer reaches.

According to the model, the ratios of aluminum isotopes can be explained by the parent isotope having been injected in a one-time event into the planet-forming disk by a shock wave from an exploding star and then traveling both inward and outward in the disk. The reason oxygen isotopes are present in a different pattern is because they are derived from sustained chemical reactions occurring on the surface of the outer solar nebula, rather than from a one-time event.

"These results not only teach us about the formation of our own solar system, but also could aid us in the search for other stars orbited by habitable planets," Boss said. "Understanding the mixing and transport processes that occur around Sun-like stars could give us clues about which of their surrounding planets might have conditions similar to our own."

This work was supported by the NASA Origins of Solar Systems program and the NASA Astrobiology Institute. Some of the calculations were performed on the Carnegie Alpha Cluster, the purchase of which was partially supported by a NSF grant.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alan P. Boss. Mixing and Transport of Short-lived and Stable Isotopes and Refractory Grains in Protoplanetary Disks. The Astrophysical Journal, 2013; 773 (1): 5 DOI: 10.1088/0004-637X/773/1/5

Cite This Page:

Carnegie Institution. "Solar system's youth gives clues to planet search." ScienceDaily. ScienceDaily, 24 July 2013. <www.sciencedaily.com/releases/2013/07/130724114243.htm>.
Carnegie Institution. (2013, July 24). Solar system's youth gives clues to planet search. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/07/130724114243.htm
Carnegie Institution. "Solar system's youth gives clues to planet search." ScienceDaily. www.sciencedaily.com/releases/2013/07/130724114243.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins