Featured Research

from universities, journals, and other organizations

Solar system's youth gives clues to planet search

Date:
July 24, 2013
Source:
Carnegie Institution
Summary:
Comets and meteorites contain clues to our solar system's earliest days. But some of the findings are puzzle pieces that don't seem to fit well together. A new set of theoretical models shows how an outburst event in the Sun's formative years could explain some of this disparate evidence. The research could have implications for the hunt for habitable planets outside of our solar system.

Modeling results show where the injected gas and dust ended ups only 34 years after being injected at the disk’s surface. It was injected 9 astronomical units from the central prostar and is now in the disk’s midplane. The outer edge shown is 10 astronomical units from the central prostar. Mixing and transport are still underway and the underlying spiral arms that drive the mixing and transport can be seen.
Credit: Image courtesy of Alan Boss

Comets and meteorites contain clues to our solar system's earliest days. But some of the findings are puzzle pieces that don't seem to fit well together. A new set of theoretical models from Carnegie's Alan Boss shows how an outburst event in the Sun's formative years could explain some of this disparate evidence. His work could have implications for the hunt for habitable planets outside of our solar system.

The research is published by The Astrophysical Journal.

One way to study the solar system's formative period is to look for samples of small crystalline particles that were formed at high temperatures but now exist in icy comets. Another is to analyze the traces of isotopes -- versions of elements with the same number of protons, but a different number of neutrons -- found in primitive meteorites. These isotopes decay and turn into different, so-called daughter, elements. The initial abundances of these isotopes tell researchers where the isotopes may have come from, and can give clues as to how they traveled around the early solar system.

Stars are surrounded by disks of rotating gas during the early stages of their lives. Observations of young stars that still have these gas disks demonstrate that sun-like stars undergo periodic bursts, lasting about 100 years each, during which mass is transferred from the disk to the young star. But analysis of particles and isotopes from comets and meteorites present a mixed picture of solar system formation, more complicated than just a one-way movement of matter from the disk to the star.

The heat-formed crystalline grains found in icy comets imply significant mixing and outward movement of matter from close to the star to the outer edges of the solar system. Some isotopes, such as aluminum, support this view. However, isotopes of the element oxygen seem to paint a different picture.

Boss' new model demonstrates how a phase of marginal gravitational instability in the gas disk surrounding a proto-sun, leading to an outburst phase, can explain all of these findings. The results are applicable to stars with a variety of masses and disk sizes. According to the model, the instability can cause a relatively rapid transportation of matter between the star and the gas disk, where matter is moved both inward and outward. This accounts for the presence of heat-formed crystalline particles in comets from the solar system's outer reaches.

According to the model, the ratios of aluminum isotopes can be explained by the parent isotope having been injected in a one-time event into the planet-forming disk by a shock wave from an exploding star and then traveling both inward and outward in the disk. The reason oxygen isotopes are present in a different pattern is because they are derived from sustained chemical reactions occurring on the surface of the outer solar nebula, rather than from a one-time event.

"These results not only teach us about the formation of our own solar system, but also could aid us in the search for other stars orbited by habitable planets," Boss said. "Understanding the mixing and transport processes that occur around Sun-like stars could give us clues about which of their surrounding planets might have conditions similar to our own."

This work was supported by the NASA Origins of Solar Systems program and the NASA Astrobiology Institute. Some of the calculations were performed on the Carnegie Alpha Cluster, the purchase of which was partially supported by a NSF grant.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alan P. Boss. Mixing and Transport of Short-lived and Stable Isotopes and Refractory Grains in Protoplanetary Disks. The Astrophysical Journal, 2013; 773 (1): 5 DOI: 10.1088/0004-637X/773/1/5

Cite This Page:

Carnegie Institution. "Solar system's youth gives clues to planet search." ScienceDaily. ScienceDaily, 24 July 2013. <www.sciencedaily.com/releases/2013/07/130724114243.htm>.
Carnegie Institution. (2013, July 24). Solar system's youth gives clues to planet search. ScienceDaily. Retrieved October 19, 2014 from www.sciencedaily.com/releases/2013/07/130724114243.htm
Carnegie Institution. "Solar system's youth gives clues to planet search." ScienceDaily. www.sciencedaily.com/releases/2013/07/130724114243.htm (accessed October 19, 2014).

Share This



More Space & Time News

Sunday, October 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com
Comet Set for Rare Close Shave With Mars

Comet Set for Rare Close Shave With Mars

AFP (Oct. 16, 2014) A fast-moving comet is about to shave by Mars for a once-in-a-million-years encounter that a flurry of spacecraft around the Red Planet hope to capture and photograph, NASA said. Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins