Featured Research

from universities, journals, and other organizations

Key target responsible for triggering detrimental effects in brain trauma identified

Date:
July 25, 2013
Source:
University of Bristol
Summary:
Researchers studying a type of cell found in the trillions in our brain have made an important discovery as to how it responds to brain injury and disease such as stroke. Scientists have identified proteins which trigger the processes that underlie how astrocyte cells respond to neurological trauma.

Researchers studying a type of cell found in the trillions in our brain have made an important discovery as to how it responds to brain injury and disease such as stroke. A University of Bristol team has identified proteins which trigger the processes that underlie how astrocyte cells respond to neurological trauma.

The star-shaped astrocytes, which outnumber neurons in humans, are a type of glial cell that comprise one of two main categories of cell found in the brain along with neurons. The cells, which have branched extensions that reach synapses (the connections between neurons) blood vessels, and neighbouring astrocytes, play a pivotal role in almost all aspects of brain function by supplying physical and nutritional support for neurons. They also contribute to the communication between neurons and the response to injury.

However, the cells are also known to trigger both beneficial and detrimental effects in response to neurological trauma. When the brain is subjected to injury or disease, the cells react in a number of ways, including a change in shape. In severe cases, the altered cells form a scar, which is thought to have beneficial, as well as detrimental effects by allowing prompt repair of the blood-brain barrier, and limiting cell death, but also impairing the regeneration of nerve fibres and the effective incorporation of neuronal grafts -- where additional neuronal cells are added to the injured site.

The cells change shape via the regulation of a structural component of the cell called the actin cytoskeleton, which is made up of filaments that shrink and grow to physically manoeuvre parts of the cell. In the lab, the team cultured astrocytes in a dish and were able to make them change shape by chemically or genetically manipulating proteins that control actin, and also by mimicking the environment that the cells would be exposed to during a stroke.

By doing so the team found that very dramatic changes in cell shape were caused by controlling the actin cytoskeleton in the in vitro stroke model. The team also identified additional protein molecules that control this process, suggesting that a complex mechanism is involved.

Dr Jonathan Hanley from the University's School of Biochemistry said: "Our findings are crucial to our understanding of how the brain responds to many disorders that affect millions of people every year. Until now, the details of the actin-based mechanisms that control astrocyte morphology were unknown, so we anticipate that our work will lead to future discoveries about this important process."


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Murk, E. M. Blanco Suarez, L. M. R. Cockbill, P. Banks, J. G. Hanley. The antagonistic modulation of Arp2/3 activity by N-WASP/WAVE2 and PICK1 defines dynamic changes in astrocyte morphology. Journal of Cell Science, 2013; DOI: 10.1242/jcs.125146

Cite This Page:

University of Bristol. "Key target responsible for triggering detrimental effects in brain trauma identified." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725104857.htm>.
University of Bristol. (2013, July 25). Key target responsible for triggering detrimental effects in brain trauma identified. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2013/07/130725104857.htm
University of Bristol. "Key target responsible for triggering detrimental effects in brain trauma identified." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725104857.htm (accessed April 23, 2014).

Share This



More Mind & Brain News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
Do We Get Nicer With Age?

Do We Get Nicer With Age?

Newsy (Apr. 22, 2014) A recent report claims personality can change over time as we age, and usually that means becoming nicer and more emotionally stable. Video provided by Newsy
Powered by NewsLook.com
How to Master Motherhood With the Best Work/Life Balance

How to Master Motherhood With the Best Work/Life Balance

TheStreet (Apr. 22, 2014) In the U.S., there are more than 11 million couples trying to conceive at any given time. From helping celebrity moms like Bethanny Frankel to ordinary soon-to-be-moms, TV personality and parenting expert, Rosie Pope, gives you the inside scoop on mastering motherhood. London-born entrepreneur Pope is the creative force behind Rosie Pope Maternity and MomPrep. She explains why being an entrepreneur offers the best life balance for her and tips for all types of moms. Video provided by TheStreet
Powered by NewsLook.com
Sorry, Guys, Only Women Can Make Their Voices Sound Sexier

Sorry, Guys, Only Women Can Make Their Voices Sound Sexier

Newsy (Apr. 21, 2014) According to researchers at Albright College, women have the ability to make their voices sound sexier, but men don't. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins