Science News

... from universities, journals, and other research organizations

Using Gold and Light to Study Molecules in Water

July 31, 2013 — Thanks to a new device that is the size of a human hair, it is now possible to detect molecules in a liquid solution and observe their interactions. This is of major interest for the scientific community, as there is currently no reliable way of examining both the behavior and the chemical structure of molecules in a liquid in real time.


Share This:

Developed at Boston University by Hatice Altug and her student Ronen Adato, the process brings together infrared detection techniques and gold nanoparticles. It could potentially make a whole new class of measurements possible, which would be a critical step in understanding basic biological functions as well as key aspects of disease progression and treatment. "Our technology could prove useful for studying the behaviour of proteins, medicines and cells in the blood or pollutants in water," says Hatice Altug.

Now a researcher at EPFL Dr. Altug has had her results published in Nature Communications.

Like a guitar string

The device is based on a well-known detection technique called infrared absorption spectroscopy. Infrared light can already be used to detect elements: The beam excites the molecules, which start to vibrate in different ways depending on their size, composition and other properties. "It's like a guitar string vibrating differently depending on its length," explains Hatice Altug. The unique vibration of each type of molecule acts as a signature for that molecule.

This technique works very well in dry environments but not at all well in aqueous environments. "A large number of molecules need to be present for them to be detected. It's also more difficult to detect molecules in water, as when the beam goes through the solution, the water molecules vibrate as well and interfere with the target molecule's signature," explains Dr. Altug.

Using nanoparticles to capture and illuminate molecules

To get around these obstacles, the researchers have developed a system capable of isolating the target molecules and eliminating interferences.

The size of a penny, the device is made up of miniature fluidic chambers, which are covered on one side with nano-scale gold particles with surprising properties. "We cover the surface of the nanoparticles with, for example, antibodies, in order to make a specific protein or chemical stick to them," explains the researcher. "Once the solution containing the targeted elements is introduced into the chamber, the nanoparticles act as molecule catchers." This technique makes it possible to isolate the target molecules from the rest of the liquid.

But this is not the only role the nanoparticles play. They are also capable of concentrating light in nanometer-size volumes around their surface as a result of plasmonic resonance.

In the chamber, the beam doesn't need to pass through the whole solution. Instead, it is sent straight to the nanoparticle, which concentrates the light. Caught in the trap, the target molecules are the only ones that are so intensely exposed to the photons.

The reaction between the molecules and the infrared photons is extremely strong, which means they can be detected and observed very precisely. "This technique enables us to observe molecules in-situ as they react with elements in their natural environment. This could prove extremely useful for both medicine and biology," states Dr. Altug.

Use in medical research

Another advantage is that the chip is extremely compact and can be connected to microscopes already in use. "We don't need large sample sizes to conduct our analyses," says Ronen Adato.

Going forward, Hatice Altug intends to continue her research with a focus on medical applications. The first tests have been conducted with ordinary antibody molecules, and the analyses now need to be fine-tuned. "I'd really like to work with other life-science researchers, hospitals and biologists. I'm especially interested in using my method in the study of diseases, including cancer and neurological disorders, to observe the effect of certain medicines on diseased cells or to detect disease biomarkers, for example."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Ronen Adato, Hatice Altug. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3154
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,674

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Is Your Water Safe?

Physical chemists have created a new, cheap test to detect mercury, an element known to harm the brain, kidneys, heart, lungs and immune system. A. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?