Featured Research

from universities, journals, and other organizations

Removing a protein enhances defense against bacteria in CGD mice

Date:
August 1, 2013
Source:
NIH/National Institute of Diabetes and Digestive and Kidney Diseases
Summary:
Deletion of a protein in white blood cells improves their ability to fight the bacteria staphylococcus aureus and possibly other infections in mice with chronic granulomatous disease (CGD), according to a new study. CGD, a genetic disorder also found in people, is marked by recurrent, life-threatening infections.

The image shows a properly functioning white blood cell without CGD.
Credit: Image courtesy of NIH/National Institute of Diabetes and Digestive and Kidney Diseases

Deletion of a protein in white blood cells improves their ability to fight the bacteria staphylococcus aureus and possibly other infections in mice with chronic granulomatous disease (CGD), according to a National Institutes of Health study. CGD, a genetic disorder also found in people, is marked by recurrent, life-threatening infections. The study's findings appear online in The Journal of Clinical Investigation.

A team of researchers from NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) compared three groups: CGD-afflicted mice with the protein Olfm4; CGD-afflicted mice in which the protein had been deleted, and healthy mice in which the protein had been deleted. Olfm4, also known as olfactomedin 4, is sometimes helpful in limiting tissue damage but can also hinder white blood cells' ability to kill bacteria.

The researchers found that the white blood cells in mice without the protein could better withstand staphylococcus aureus infection, a major threat to patients with CGD.

"Although treatment for CGD has greatly improved over the past several years, the disease remains challenging," said Dr. Wenli Liu, staff scientist and lead author. "Our research suggests a novel strategy that might pave the way toward developing new treatments to fight against common and often deadly infections."

The results also suggest another potential method to treat methicillin-resistant staphylococcus aureus (MRSA) and other drug-resistant bacteria in patients without CGD, used alongside other therapies. MRSA is a strain of bacteria that has become resistant to antibiotics most often used to treat staph infections. Most commonly contracted in hospitals, MRSA represents a significant public health threat.

"Over the years, MRSA and other bacteria have evolved to be resistant to many antibiotics," said Griffin P. Rodgers, M.D., NIDDK director and study lead. "This study suggests an alternative approach to combat infection by strengthening white blood cell capabilities from within the cells, in addition to resorting to traditional antibiotic treatment."

The research group is now investigating how changing Olfm4 levels in human cells enhances immunity to and from a variety of drug-resistant bacteria. The findings may put researchers closer to developing drug treatment for people, possibly through development of an antibody or small molecule that could inhibit Olfm4 activity.

The study was supported by the Intramural Research Program at NIDDK. Administrative and technical support were provided by the National Heart, Lung, and Blood Institute and the National Institute of Allergy and Infectious Diseases, both part of NIH.


Story Source:

The above story is based on materials provided by NIH/National Institute of Diabetes and Digestive and Kidney Diseases. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute of Diabetes and Digestive and Kidney Diseases. "Removing a protein enhances defense against bacteria in CGD mice." ScienceDaily. ScienceDaily, 1 August 2013. <www.sciencedaily.com/releases/2013/08/130801142424.htm>.
NIH/National Institute of Diabetes and Digestive and Kidney Diseases. (2013, August 1). Removing a protein enhances defense against bacteria in CGD mice. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2013/08/130801142424.htm
NIH/National Institute of Diabetes and Digestive and Kidney Diseases. "Removing a protein enhances defense against bacteria in CGD mice." ScienceDaily. www.sciencedaily.com/releases/2013/08/130801142424.htm (accessed September 15, 2014).

Share This



More Plants & Animals News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins