Featured Research

from universities, journals, and other organizations

Insulin pills? More intestinal cells than thought can absorb larger particles

Date:
August 5, 2013
Source:
Brown University
Summary:
A new study reports that the small intestine uses more cells than scientists had realized to absorb microspheres large enough to contain therapeutic protein drugs, such as insulin. The finding in rats is potentially good news for developing a means for oral delivery of such drugs.

Safe passage. Microspheres (red) permeate the intestinal lining (green) on their way to the bloodstream in this image taken with a two-photon microscope. Eventually, microspheres could carry medication to targeted sites within the body.
Credit: Mathiowitz lab/Brown University

A new study reports that the small intestine uses more cells than scientists had realized to absorb microspheres large enough to contain therapeutic protein drugs, such as insulin. The finding in rats, published in the Proceedings of the National Academy of Sciences, is potentially good news for developing a means for oral delivery of such drugs.

The small intestine employs more cells and mechanisms than scientists previously thought to absorb relatively large particles, such as those that could encapsulate protein-based therapeutics like insulin, according to a new study. The findings, published the week of Aug. 5, 2013, in the Proceedings of the National Academy of Sciences, open another window for drug makers to increase absorption of medicines taken by mouth.

Scientists at Brown University and Wayne State University worked with rats to quantify the intestinal absorption and distribution around the body of polystyrene spheres ranging between 0.5 and 5 micrometers in diameter. They found that a substantial portion of the absorption occurs via the process of endocytosis in cells called enterocytes. The conventional wisdom had long been that particles of that size would only be absorbed by phagocytosis in "microfold," or M, cells, which compose less than 1 percent of the absorptive intestinal lining.

"Data from these studies challenge current dogma in the area of oral drug delivery," wrote the scientists including lead authors Joshua Reineke, a Brown graduate now a professor at Wayne State, and Daniel Cho, a student in the Warren Alpert Medical School of Brown University.

With this new insight -- especially if it can be expanded, replicated, and shown in people -- drug designers could consider targeting future biodegradable drug-containing microspheres to reach enterocytes in addition to M cells, said corresponding author Edith Mathiowitz, professor of medical science and engineering at Brown.

"You can design it so that it will be directed there," Mathiowitz said. "This is basically what my future work probably will be."

Mathiowitz's research is focused on discovering a means by which protein-based drugs, which currently have to be injected, could be swallowed, survive the harsh environment of the stomach, become absorbed as much as possible in the intestine, and reach the tissues where they can release their therapeutic cargo. Earlier this summer Mathiowitz published a paper showing that a polymer coating that survives stomach acids also increases intestinal uptake of microspheres. In 2011 she described a system for holding a capsule in place at desired locations of the intestine using magnets.

The new research in PNAS helps explain where and how microspheres are absorbed by the intestine.

Absorb and go seek

The researchers performed several experiments to track micropshere absorption in the rat models. For some rats they administered the spheres by mouth. In other rats they injected them directly into one or the other of the intestine's main sections: the ileum and the jejunum. Among the rats they also varied the sphere sizes. After waiting an hour or five hours, they tracked down the spheres to see how many were absorbed and what tissues they had reached.

Across the many combinations of size, location, means of administration and time, the intestines took up between 10 and 50 percent of spheres. Although by no means evenly, in each case the bloodstream distributed absorbed spheres to a wide variety of tissues including the brain and lungs, and more commonly, the liver.

Enter the enterocytes

Via microscopes the researchers could see red-fluorescing microspheres passing through enterocytes. Further, more systematic evidence for the role of enterocytes and their absorption via endocytosis came from another experiment where researchers used a variety of agents that block endocytosis.

When they did so, as for instance with 1-micrometer spheres in the ileum, where both M cells and enterocytes can be found, absorption dropped to between 5 and 15 percent of spheres from more than 32 percent in rats where the process was not blocked (an agent that blocked both endocytosis and phagocytosis blocked the most). Absorption dropped even more dramatically in the jejunum, where there are no M cells, falling to a range between 3 and 10 percent, compared to more than 45 percent in rats with normal endocytosis. Enterocytes may therefore play not only an important role, but perhaps a bigger role than M cells.

"We need to know what the intestine is doing and where the particles go," Mathiowitz said. "This is the first time that we have quantified the process as well as documented biodistribution to specific organs. In order to be able to consider and translate the technology to humans, we also need to verify the reproducibility of the process in different animal species."

Advancing these studies might not only improve drug delivery, Mathiowitz noted, but could lead to ways to prevent absorption of harmful substances. It could at least aid toxicology research to know that more intestinal cells than just M cells can take up particles greater than a micrometer in diameter.

In addition to Reineke, Cho, and Mathiowitz, other authors on the paper were Yu-Ting Dingle, A. Peter Morello III, Jules Jacob, and Christopher Thanos, all of Brown.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Insulin pills? More intestinal cells than thought can absorb larger particles." ScienceDaily. ScienceDaily, 5 August 2013. <www.sciencedaily.com/releases/2013/08/130805152412.htm>.
Brown University. (2013, August 5). Insulin pills? More intestinal cells than thought can absorb larger particles. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/08/130805152412.htm
Brown University. "Insulin pills? More intestinal cells than thought can absorb larger particles." ScienceDaily. www.sciencedaily.com/releases/2013/08/130805152412.htm (accessed August 20, 2014).

Share This




More Health & Medicine News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: World's Oldest Man Lives in Japan

Raw: World's Oldest Man Lives in Japan

AP (Aug. 20, 2014) A 111-year-old Japanese was certified as the world's oldest man by Guinness World Records on Wednesday. Sakari Momoi, a native of Fukushima in northern Japan, was given a certificate at a hospital in Tokyo. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
101-Year-Old Working Man Has All The Advice You Need

101-Year-Old Working Man Has All The Advice You Need

Newsy (Aug. 19, 2014) Herman Goldman has worked at the same lighting store for almost 75 years. Find out his secrets to a happy, productive life. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins