Featured Research

from universities, journals, and other organizations

Bringing light to a halt: Physicists freeze motion of light for a minute

Date:
August 6, 2013
Source:
Technische Universität Darmstadt
Summary:
Physicists have been able to stop something that has the greatest possible speed and that never really stops: light. A decade ago, physicists stopped it very for a short moment. In recent years, this extended towards stop times of a few seconds for simple light pulses in extremely cold gases and special crystals. But now the same researchers extended the possible duration and applications for freezing the motion of light considerably. The physicists stopped light for about one minute. They were also able to save images that were transferred by the light pulse into the crystal for a minute -- a million times longer than previously possible.

Light experiment: Success by combining known methods.
Credit: Katrin Binner

Physicists in Darmstadt have been able to stop something that has the greatest possible speed and that never really stops: light. About a decade ago, physicists stopped it very for just a moment. In recent years, this extended towards stop times of a few seconds for simple light pulses in extremely cold gases and special crystals. But now the researchers at Darmstadt extended the possible duration and applications for freezing the motion of light considerably.

Related Articles


The physicists, headed by Thomas Halfmann at the Institute of Applied Physics of the Technische Universität Darmstadt, stopped light for about one minute. They were also able to save images that were transferred by the light pulse into the crystal for a minute -- a million times longer than previously possible.

The researchers achieved the record by cleverly combining various known methods of their field. The result will have practical significance in future data processing systems that operate using light.

To stop the light, the physicists used a glass-like crystal that contains a low concentration of ions -- electrically charged atoms -- of the element praseodymium. The experimental setup also includes two laser beams. One is part of the deceleration unit, while the other is to be stopped. The first light beam, called the "control beam," changes the optical properties of the crystal: the ions then change the speed of light to a high degree. The second beam, the one to be stopped, now comes into contact with this new medium of crystal and laser light and is slowed down within it. When the physicists switch off the control beam at the same moment that the other beam is within the crystal, the decelerated beam comes to a stop.

More precisely, the light turns into a kind of wave trapped in the crystal lattice. This can be explained in greatly simplified form as follows. The praseodymium ions are orbited by electrons. These behave similarly to a chain of magnets: if you put one into motion, the movement -- mediated by magnetic forces -- propagates in the chain like a wave. Since physicists call the magnetism of electrons "spin," a "spin wave" forms in the same manner when freezing the laser beam. This is a reflection of the laser's light wave. In this way, the Darmstadt researchers were able to store images, such as a striped pattern, made of laser light within the crystal. The information can be read out again by turning the control laser beam on again.

The fact that only very short storage times were possible until now is because perturbing environments interfered with the spin wave, similar to how moving ships mix up waves in a lake. The information about the stored light wave is thus gradually lost. The perturbations can be alleviated by applying magnetic fields and high-frequency pulses. In our example, these fields reduce the number of boats on the lake, as it were.

How well this works depends strongly on the parameters of the driving optical fields, magnetic fields and the high-frequency pulses. There are very many variations, and the optimal setting can hardly be calculated because of the complexity. Therefore, the Darmstadt researchers used computer algorithms that quickly and entirely automatically find the best solutions during the experiment. One of the algorithms is based on natural evolution, which produces organisms that are adapted as well as possible to the environment. Using the algorithms, the researchers were able to optimize the laser beams, the magnetic field and the high-frequency pulses in such a manner that the spin waves survived nearly as long as is possible in the crystal.

Based on this success, Halfmann's team now intends to explore techniques that can store light significantly longer -- perhaps for a week -- and to achieve a higher bandwidth and data transfer rate for efficient information storage by stopped light.


Story Source:

The above story is based on materials provided by Technische Universität Darmstadt. The original article was written by Christian Meier. Note: Materials may be edited for content and length.


Journal Reference:

  1. Georg Heinze, Christian Hubrich, Thomas Halfmann. Stopped Light and Image Storage by Electromagnetically Induced Transparency up to the Regime of One Minute. Physical Review Letters, 2013; 111 (3) DOI: 10.1103/PhysRevLett.111.033601

Cite This Page:

Technische Universität Darmstadt. "Bringing light to a halt: Physicists freeze motion of light for a minute." ScienceDaily. ScienceDaily, 6 August 2013. <www.sciencedaily.com/releases/2013/08/130806111151.htm>.
Technische Universität Darmstadt. (2013, August 6). Bringing light to a halt: Physicists freeze motion of light for a minute. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/08/130806111151.htm
Technische Universität Darmstadt. "Bringing light to a halt: Physicists freeze motion of light for a minute." ScienceDaily. www.sciencedaily.com/releases/2013/08/130806111151.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins