Featured Research

from universities, journals, and other organizations

Making connections in the eye: Wiring diagram of retinal neurons is first step toward mapping the human brain

Date:
August 7, 2013
Source:
Massachusetts Institute of Technology
Summary:
Using a combination of human and artificial intelligence, scientists have mapped all the wiring among 950 neurons within a tiny patch of the mouse retina.

950 neurons reconstructed in a block of mouse retina, imaged using serial block-face electron microscopy (gray images). Spheres indicate cell bodies (red, ganglion cells, green, amacrine cells).
Credit: Fabian Isensee, Julia Kuhl; Helmstaedter et al., 2013 / Max Planck Institute for Medical Research

The human brain has 100 billion neurons, connected to each other in networks that allow us to interpret the world around us, plan for the future, and control our actions and movements. MIT neuroscientist Sebastian Seung wants to map those networks, creating a wiring diagram of the brain that could help scientists learn how we each become our unique selves.

In a paper appearing in the Aug. 7 online edition of Nature, Seung and collaborators at MIT and the Max Planck Institute for Medical Research in Germany have reported their first step toward this goal: Using a combination of human and artificial intelligence, they have mapped all the wiring among 950 neurons within a tiny patch of the mouse retina.

Composed of neurons that process visual information, the retina is technically part of the brain and is a more approachable starting point, Seung says. By mapping all of the neurons in this 117-micrometer-by-80-micrometer patch of tissue, the researchers were able to classify most of the neurons they found, based on their patterns of wiring. They also identified a new type of retinal cell that had not been seen before.

"It's the complete reconstruction of all the neurons inside this patch. No one's ever done that before in the mammalian nervous system," says Seung, a professor of computational neuroscience at MIT.

Other MIT authors of the paper are former postdoc Srinivas Turaga and former graduate student Viren Jain. The Max Planck team was led by Winfried Denk, a physicist and the Max Planck Institute's director. Moritz Helmstaedter, a research group leader at the Max Planck Institute, is the lead author of the paper, and Kevin Briggman, a former postdoc at Max Planck, is also an author.

Tracing connections

Neurons in the retina are classified into five classes: photoreceptors, horizontal cells, bipolar cells, amacrine cells and ganglion cells. Within each class are many types, classified by shape and by the connections they make with other neurons.

"Neurons come in many types, and the retina is estimated to contain 50 to 100 types, but they've never been exhaustively characterized. And their connections are even less well known," Seung says.

In this study, the research team focused on a section of the retina known as the inner plexiform layer, which is one of several layers sandwiched between the photoreceptors, which receive visual input, and the ganglion cells, which relay visual information to the brain via the optic nerve. The neurons of the inner plexiform layer help to process visual information as it passes from the surface of the eye to the optic nerve.

To map all of the connections in this small patch of retina, the researchers first took electron micrographs of the targeted section. The Max Planck researchers obtained these images using a technique called serial block face scanning electron microscopy, which they invented to generate high-resolution three-dimensional images of biological samples.

Developing a wiring diagram from these images required both human and artificial intelligence. First, the researchers hired about 225 German undergraduates to trace the "skeleton" of each neuron, which took more than 20,000 hours of work (a little more than two years).

To flesh out the bodies of the neurons, the researchers fed these traced skeletons into a computer algorithm developed in Seung's lab, which expands the skeletons into full neuron shapes. The researchers used machine learning to train the algorithm, known as a convolutional network, to detect the boundaries between neurons. Using those as reference points, the algorithm can fill in the entire body of each neuron.

"Tracing neurons in these images is probably one of the world's most challenging computer vision problems. Our convolutional networks are actually deep artificial neural networks designed with inspiration from how our own visual system processes visual information to solve these difficult problems," Turaga says.

If human workers were to fill in the entire neuron body, it would take 10 to 100 times longer than just drawing the skeleton. "This speeds up the whole process," Seung says. "It's a way of combining human and machine intelligence."

The only previous complete wiring diagram, which mapped all of the connections between the 302 neurons found in the worm Caenorhabditis elegans, was reported in 1986 and required more than a dozen years of tedious labor.

"I think this is going to be a really significant paper in the history of how we study complex systems," says Richard Masland, a professor of ophthalmology at the Massachusetts Eye and Ear Infirmary, who was not part of the research team. "This paper identifies circuit motifs that are interesting but really are just symbolic of the many types of questions that could be answered using these techniques."

Classifying neurons

Wiring diagrams allow scientists to see where neurons connect with each other to form synapses -- the junctions that allow neurons to relay messages. By analyzing how neurons are connected to each other, researchers can classify different types of neurons.

The researchers were able to identify most of the 950 neurons included in the new retinal-wiring diagram based on their connections with other neurons, as well as the shape of the neuron. A handful of neurons could not be classified because there was only one of their type, or because only a fragment of the neuron was included in the imaged sample.

"We haven't completed the project of classifying types but this shows that it should be possible. This method should be able to do it, in principle, if it's scaled up to a larger piece of tissue," Seung says.

In this study, the researchers identified a new class of bipolar cells, which relay information from photoreceptors to ganglion cells. However, further study is needed to determine this cell type's exact function.

Seung's lab is now working on a wiring diagram of a larger piece of the retina -- 0.3 millimeter by 0.3 millimeter -- using a slightly different approach. In that study, the researchers first feed their electron micrographs into the computer algorithm, then ask human volunteers to check over the computer's work and correct mistakes through a crowd-sourcing project known as EyeWire.

The research was funded by the Max Planck Society, the Howard Hughes Medical Institute and the Gatsby Charitable Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Moritz Helmstaedter, Kevin L. Briggman, Srinivas C. Turaga, Viren Jain, H. Sebastian Seung, Winfried Denk. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 2013; 500 (7461): 168 DOI: 10.1038/nature12346

Cite This Page:

Massachusetts Institute of Technology. "Making connections in the eye: Wiring diagram of retinal neurons is first step toward mapping the human brain." ScienceDaily. ScienceDaily, 7 August 2013. <www.sciencedaily.com/releases/2013/08/130807134241.htm>.
Massachusetts Institute of Technology. (2013, August 7). Making connections in the eye: Wiring diagram of retinal neurons is first step toward mapping the human brain. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2013/08/130807134241.htm
Massachusetts Institute of Technology. "Making connections in the eye: Wiring diagram of retinal neurons is first step toward mapping the human brain." ScienceDaily. www.sciencedaily.com/releases/2013/08/130807134241.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


The Brain With All Its Cells and Their Connections: Scientists Succeed in the Complete Reconstruction of a Piece of Retina

Aug. 7, 2013 Decoding the essence of being -- understanding the brain and all its connections, that is Connectomics. Scientists have now made an important step in this direction: After analyzing data for four ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins