Featured Research

from universities, journals, and other organizations

Efficient and robust: Why quantum transport can be close to optimal even in disordered molecular structures

Date:
August 9, 2013
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Physicists show why quantum transport can be close to optimal even in disordered molecular structures. 

Geometric properties that enable waves to overlap and reinforce each other even in disordered molecular structures: A team led by the theoretical physicist Dr. Florian Mintert and the biophysicist Dr. Francesco Rao, junior fellows of the School of Soft Matter Research at the Freiburg Institute for Advanced Studies (FRIAS) of the University of Freiburg, is investigating the conditions and laws of quantum transport in a current study. In light of an impending global energy crisis, the use of renewable energies like solar energy holds great promise for sustainable development. For millions of years, plants have used solar energy in the process of photosynthesis, converting lower-energy substances into high-energy substances with the help of light energy.

Related Articles


Quantum transport plays an important role in photosynthesis. It is based on a sensitive state that leads to constructive interference, causing waves to overlap and reinforce each other. Preconditions for this state are typically a well-controlled environment and very low temperatures. With the help of theoretical models and complex network analyses, the Freiburg scientists have now succeeded in identifying key geometric properties that enable constructive interference even in disordered media like molecular structures. In particular, dividing the medium into active and inactive components makes the transport efficient as well as robust against thermal fluctuations, i..e., motion of the individual components. Combining these properties as a construction principle would allow scientists to produce molecular structures that achieve optimal efficiency even when control over the precise geometry is suboptimal.

The study is the result of an interdisciplinary project conducted by two junior research groups at FRIAS that merged knowledge of quantum systems and molecular processes with expertise in the analysis of complex networks. The study underlines the necessity of interdisciplinary cooperation for tackling and solving challenging scientific problems.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefano Mostarda, Federico Levi, Diego Prada-Gracia, Florian Mintert, Francesco Rao. Structure–dynamics relationship in coherent transport through disordered systems. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3296

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Efficient and robust: Why quantum transport can be close to optimal even in disordered molecular structures." ScienceDaily. ScienceDaily, 9 August 2013. <www.sciencedaily.com/releases/2013/08/130809114829.htm>.
Albert-Ludwigs-Universität Freiburg. (2013, August 9). Efficient and robust: Why quantum transport can be close to optimal even in disordered molecular structures. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/08/130809114829.htm
Albert-Ludwigs-Universität Freiburg. "Efficient and robust: Why quantum transport can be close to optimal even in disordered molecular structures." ScienceDaily. www.sciencedaily.com/releases/2013/08/130809114829.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) — In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) — British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins