Featured Research

from universities, journals, and other organizations

Efficient and robust: Why quantum transport can be close to optimal even in disordered molecular structures

Date:
August 9, 2013
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Physicists show why quantum transport can be close to optimal even in disordered molecular structures. 

Geometric properties that enable waves to overlap and reinforce each other even in disordered molecular structures: A team led by the theoretical physicist Dr. Florian Mintert and the biophysicist Dr. Francesco Rao, junior fellows of the School of Soft Matter Research at the Freiburg Institute for Advanced Studies (FRIAS) of the University of Freiburg, is investigating the conditions and laws of quantum transport in a current study. In light of an impending global energy crisis, the use of renewable energies like solar energy holds great promise for sustainable development. For millions of years, plants have used solar energy in the process of photosynthesis, converting lower-energy substances into high-energy substances with the help of light energy.

Quantum transport plays an important role in photosynthesis. It is based on a sensitive state that leads to constructive interference, causing waves to overlap and reinforce each other. Preconditions for this state are typically a well-controlled environment and very low temperatures. With the help of theoretical models and complex network analyses, the Freiburg scientists have now succeeded in identifying key geometric properties that enable constructive interference even in disordered media like molecular structures. In particular, dividing the medium into active and inactive components makes the transport efficient as well as robust against thermal fluctuations, i..e., motion of the individual components. Combining these properties as a construction principle would allow scientists to produce molecular structures that achieve optimal efficiency even when control over the precise geometry is suboptimal.

The study is the result of an interdisciplinary project conducted by two junior research groups at FRIAS that merged knowledge of quantum systems and molecular processes with expertise in the analysis of complex networks. The study underlines the necessity of interdisciplinary cooperation for tackling and solving challenging scientific problems.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefano Mostarda, Federico Levi, Diego Prada-Gracia, Florian Mintert, Francesco Rao. Structure–dynamics relationship in coherent transport through disordered systems. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3296

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Efficient and robust: Why quantum transport can be close to optimal even in disordered molecular structures." ScienceDaily. ScienceDaily, 9 August 2013. <www.sciencedaily.com/releases/2013/08/130809114829.htm>.
Albert-Ludwigs-Universität Freiburg. (2013, August 9). Efficient and robust: Why quantum transport can be close to optimal even in disordered molecular structures. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/08/130809114829.htm
Albert-Ludwigs-Universität Freiburg. "Efficient and robust: Why quantum transport can be close to optimal even in disordered molecular structures." ScienceDaily. www.sciencedaily.com/releases/2013/08/130809114829.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) — A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins