Featured Research

from universities, journals, and other organizations

More realistic simulated cloth for more realistic video games and movies

Date:
August 12, 2013
Source:
University of California - San Diego
Summary:
Computer scientists have developed a new model to simulate with unprecedented accuracy on the computer the way cloth and light interact. The new model can be used in animated movies and in video games to make cloth look more realistic. Existing models are either too simplistic and produce unrealistic results; or too complex and costly for practical use.

Image of different types of fabrics simulated by using the model Sadeghi and colleagues developed. From left to right: silk crepe de chine, linen plain, silk shot fabric, velvet and polyester satin charmeuse. At far right, reference photographs for three of the fabrics. The model is based on a novel approach that simulates the interaction of light with cloth by simulating how each thread scatters light. The model then uses that information based on the fabric’s weaving pattern.
Credit: Iman Sadeghi et. al., Jacobs School of Engineering/UC San Diego

Computer scientists at the University of California, San Diego, have developed a new model to simulate with unprecedented accuracy on the computer the way cloth and light interact. The new model can be used in animated movies and in video games to make cloth look more realistic.

Related Articles


Existing models are either too simplistic and produce unrealistic results; or too complex and costly for practical use. Researchers presented their findings at the SIGGRAPH 2013 conference held July 21 to 25 in Anaheim, Calif.

"Not only is our model easy to use, it is also more powerful than existing models," said Iman Sadeghi, who developed the model while working on his Ph.D. in the Department of Computer Science and Engineering at UC San Diego. He currently works for Google in Los Angeles, after earning his Ph.D. in 2011.

"The model solves the long standing problem of rendering cloth," said Sadeghi's Ph.D. advisor Henrik Wann Jensen, who earned an Academy Award in 2004 for research that brought lifelike skin to animated characters and was later used in many Hollywood block busters, including "Lord of the Rings." "Cloth in movies and games often looks wrong, and this model is the first practical way of controlling the appearance of most types of cloth in a realistic way."

The model is based on a novel approach that simulates the interaction of light with cloth by simulating how each thread scatters light. The model then uses that information based on the fabric's weaving pattern. "It essentially treats the fabric as a mesh of interwoven microcylinders, which scatter light the same way as hair, but are oriented at 90 degrees from each other," Sadeghi said.

Sadeghi is an expert on the subject of simulating light interacting with hair. While a Ph.D. student in Jensen's research group, he developed a model that does just that and that was later used in Disney's "Tangled," a retelling of the Brothers Grimm fairy tale Rapunzel. The animated movie's main character sported 70 feet of simulated blond hair. He presented that work at SIGGRAPH 2010.

"In addition to faithfully reproducing the appearance of existing fabrics, our model can act as a framework to visualize what new fabrics would look like. We can simulate any combination of weaving pattern and thread types," said Oleg Bisker, who co-authored the paper as part of his master's thesis on measuring and modeling light scattering from threads.

Sadeghi and Bisker presented the work at SIGGRAPH and fielded many questions from researchers in the game and movie industries. "We expect that our model will be used in many production pipelines soon," Sadeghi added.

Sadeghi and colleagues used the model to simulate the appearance of a very complex fabric for the first time -- more specifically a polyester satin charmeuse. That fabric is particularly tricky to render, because of its unusual weaving pattern, which gives it a different appearance depending on what direction and what side it is observed from. For example, in one direction, the satin charmeuse has three mirror-like highlights on the front side of the fabric and four on the back.

To gain a deeper understanding, Sadeghi and colleagues took photographs of fabrics and even measured the scattering properties of single threads. The researchers had their "a-ha!" moment for developing the model while looking at the fabric's weaving patterns under a microscope. That's when they realized that these patterns accounted for the way the light scattered on the fabrics, creating distinct highlights and overall appearance.

In their SIGGRAPH paper, the authors also simulated other types of fabric like plain linen and a silk crepe de chine. Their goal was to demonstrate the model's ability to handle different types of thread and an unlimited variety of weaving patterns. The only other models that may be able to produce similar results to the one Sadeghi and colleagues developed put fabrics through a micro-CT-scan, an expensive and time-consuming procedure.

The other computer scientist working on the paper was Joachim De Deken, a master's student, who took measurements of fabrics.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "More realistic simulated cloth for more realistic video games and movies." ScienceDaily. ScienceDaily, 12 August 2013. <www.sciencedaily.com/releases/2013/08/130812155101.htm>.
University of California - San Diego. (2013, August 12). More realistic simulated cloth for more realistic video games and movies. ScienceDaily. Retrieved November 20, 2014 from www.sciencedaily.com/releases/2013/08/130812155101.htm
University of California - San Diego. "More realistic simulated cloth for more realistic video games and movies." ScienceDaily. www.sciencedaily.com/releases/2013/08/130812155101.htm (accessed November 20, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Thursday, November 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

You Now 'Get' No-Cost Downloads In Apple's App Store

You Now 'Get' No-Cost Downloads In Apple's App Store

Newsy (Nov. 20, 2014) Apple has changed its App Store wording from "Free" to "Get," as the European Commission and Federal Trade Commission seek to protect consumers. Video provided by Newsy
Powered by NewsLook.com
Firefox Boots Google As Default Search, Partners With Yahoo

Firefox Boots Google As Default Search, Partners With Yahoo

Newsy (Nov. 20, 2014) Mozilla on Wednesday announced it would be replacing Google with Yahoo as Firefox's default search provider. Video provided by Newsy
Powered by NewsLook.com
Nielsen Ratings Could Be Bad News For Netflix

Nielsen Ratings Could Be Bad News For Netflix

Newsy (Nov. 19, 2014) Streaming services probably aren't happy about Nielsen's plans to begin tracking their viewership next month. Video provided by Newsy
Powered by NewsLook.com
Madrid Hosts 14th World Congress on Humanoid Robots

Madrid Hosts 14th World Congress on Humanoid Robots

AFP (Nov. 19, 2014) 14th World Congress on humanoid robots in full swing under the theme "Humans and robots face-to-face" Duration: 01:08 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins