Featured Research

from universities, journals, and other organizations

Super-fast quantum computers? Scientists find asymmetry in topological insulators

Date:
August 13, 2013
Source:
DOE/National Renewable Energy Laboratory
Summary:
New research shows that a class of materials being eyed for the next generation of computers behaves asymmetrically at the sub-atomic level. This research is a key step toward understanding the topological insulators that may have the potential to be the building blocks of a super-fast quantum computer that could run on almost no electricity.

New research shows that a class of materials being eyed for the next generation of computers behaves asymmetrically at the sub-atomic level. This research is a key step toward understanding the topological insulators that may have the potential to be the building blocks of a super-fast quantum computer that could run on almost no electricity.

Scientists from the Energy Department's National Renewable Energy Laboratory contributed first-principles calculations and co-authored the paper "Mapping the Orbital Wavefunction of the Surface States in 3-D Topological Insulators," which appears in the current issue of Nature Physics. A topological insulator is a material that behaves as an insulator in its interior but whose surface contains conducting states.

In the paper, researchers explain how the materials act differently above and below the Dirac point and how the orbital and spin texture of topological insulator states switched exactly at the Dirac point. The Dirac point refers to the place where two conical forms -- one representing energy, the other momentum -- come together at a point. In the case of topological insulators, the orbital and spin textures of the sub-atomic particles switch precisely at the Dirac point. The phenomenon occurs because of the relationship between electrons and their holes in a semiconductor.

This research is a key step toward understanding the topological insulators like bismuth selenide (Bi2Se3), bismuth telluride (Bi2Te3), antimony telluride (Sb2Te3), and mercury telluride (HgTe) that may have the potential to be the building blocks of a quantum computer, a machine with the potential of loading the information from a data center into the space of a laptop and processing data much faster than today's best supercomputers.

"The energy efficiency should be much better," said NREL Scientist Jun-Wei Luo, one of the co-authors. Instead of being confined to the on-and-off switches of the binary code, a quantum computer will act more like the human brain, seeing something but imagining much more, he said. "This is entirely different technology."

Topological Insulators are of great interest currently for their potential to use their exotic properties to transmit information on electron spins with virtually no expenditure of electricity, said Luo. NREL's Xiuwen Zhang is another co-author as are scientists from University of Colorado, Rutgers University, Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, and the Colorado School of Mines. Luo and Zhang work in NREL's Center for Inverse Design, one of 46 Energy Frontier Research Centers established around the nation by the Energy Department's Office of Science in 2009 to accelerate basic research on energy.

The finding of orbital texture switch at Dirac point implies the novel backwards spin texture -- right-handed instead of left-handed, in the short-hand of physicists -- comes from the coupling of spin texture to the orbital texture for the conserved quantity is total angular momentum of the wave function, not spin. The new findings, supported partly by observations taken at the Advanced Light Source at Lawrence Berkeley National Laboratory, were surprising and bolster the potential of the topological insulators.

"In this paper, we computed and measured the profile of the topological states and found that the orbital texture of topological states switches from tangential to radial across the Dirac point," Zhang said. Equally surprising, they found that phenomenon wasn't a function of a unique material, but was common to all topological insulators.

The topological insulators probably won't be practical for solar cells, because at the surface they contain no band gap. A band gap -- the gap between when a material is in a conducting state and an inert state -- is essential for solar cells to free photons and have them turn into energy carrying electrons.

But the topological insulators could be very useful for other kinds of electronics-spintronics. The electrons of topological insulators will self-polarize at opposite device edges. "We usually drive the electron in a particular direction to spatially separate the spin-up and spin-down electrons, but this exotic property suggests that electrons as a group don't have to move," Luo said. "The initial idea is we don't need any current to polarize the electron spins. We may be able to develop a spin quantum computer and spin quantum computations."

In theory, an entire data center could operate with virtually no electricity. "That's probably more in theory than reality," Luo said, noting that other components of the center likely would still need electricity. "But it would be far more energy efficient." And the steep drop in electricity would also mean a steep drop in the number of coolers and fans needed to cool things down.

Luo cautioned that this is still basic science. The findings may have limited application to renewable energy, but Luo noted that another of NREL's key missions is energy efficiency.


Story Source:

The above story is based on materials provided by DOE/National Renewable Energy Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yue Cao, J. A. Waugh, X-W. Zhang, J-W. Luo, Q. Wang, T. J. Reber, S. K. Mo, Z. Xu, A. Yang, J. Schneeloch, G. D. Gu, M. Brahlek, N. Bansal, S. Oh, A. Zunger, D. S. Dessau. Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators. Nature Physics, 2013; 9 (8): 499 DOI: 10.1038/nphys2685

Cite This Page:

DOE/National Renewable Energy Laboratory. "Super-fast quantum computers? Scientists find asymmetry in topological insulators." ScienceDaily. ScienceDaily, 13 August 2013. <www.sciencedaily.com/releases/2013/08/130813201428.htm>.
DOE/National Renewable Energy Laboratory. (2013, August 13). Super-fast quantum computers? Scientists find asymmetry in topological insulators. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/08/130813201428.htm
DOE/National Renewable Energy Laboratory. "Super-fast quantum computers? Scientists find asymmetry in topological insulators." ScienceDaily. www.sciencedaily.com/releases/2013/08/130813201428.htm (accessed October 23, 2014).

Share This



More Computers & Math News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Free Math App Is A Teacher's Worst Nightmare

Free Math App Is A Teacher's Worst Nightmare

Newsy (Oct. 22, 2014) — New photo-recognition software from MicroBlink, called PhotoMath, solves linear equations and simple math problems with step-by-step results. Video provided by Newsy
Powered by NewsLook.com
Rate Hike Worries Down on Inflation Data

Rate Hike Worries Down on Inflation Data

Reuters - Business Video Online (Oct. 22, 2014) — Inflation remains well under control according to the latest consumer price index, giving the Federal Reserve more room to keep interest rates low for awhile. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins