Featured Research

from universities, journals, and other organizations

Small, fast and not so demanding: Breakthrough in memory technologies could bring faster computing, smaller memory devices and lower power consumption

Date:
August 14, 2013
Source:
Hebrew University of Jerusalem
Summary:
Researchers have developed a simple magnetization progress that could lead to a new generation of faster, smaller and less expensive memory technologies. “Magnetless spin memory” eliminates the need for permanent magnets in memory devices, opening the door to many technological applications.

Researchers in Israel have developed a simple magnetization progress that could lead to a new generation of faster, smaller and less expensive memory technologies. "Magnetless spin memory" eliminates the need for permanent magnets in memory devices, opening the door to many technological applications.

Memory devices like disk drives, flash drives and RAM play an important role in our lives. They are an essential component of our computers, phones, electronic appliances and cars. Yet current memory devices have significant drawbacks: dynamic RAM memory has to be refreshed periodically, static RAM data is lost when the power is off, flash memory lacks speed, and all existing memory technologies are challenged when it comes to miniaturization.

Increasingly, memory devices are a bottleneck limiting performance. In order to achieve a substantial improvement in computation speed, scientists are racing to develop smaller and denser memory devices that operate with high speed and low power consumption.

Prof. Yossi Paltiel and research student Oren Ben-Dor at the Hebrew University of Jerusalem's Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, together with researchers from the Weizmann Institute of Science, have developed a simple magnetization progress that, by eliminating the need for permanent magnets in memory devices, opens the door to many technological applications.

(Published in Nature Communications, the research paper, A chiral-based magnetic memory device without a permanent magnet, was written by Prof. Yossi Paltiel, Oren Ben Dor and Shira Yochelis at the Department of Applied Physics, Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; and Shinto P. Mathew and Ron Naaman at the Department of Chemical Physics, Weizmann Institute of Science.)

The research deals with the flow properties of electron charge carriers in memory devices. According to quantum mechanics, in addition to their electrical charge, electrons also have a degree of internal freedom called spin, which gives them their magnetic properties. The new technique, called magnetless spin memory (MSM), drives a current through chiral material (a kind of abundantly available organic molecule) and selectively transfers electrons to magnetize nano magnetic layers or nano particles. With this technique, the researchers showed it is possible to create a magnetic-based memory device that does not require a permanent magnet, and which could allow for the miniaturization of memory bits down to a single nanoparticle.

The potential benefits of magnetless spin memory are many. The technology has the potential to overcome the limitations of other magnetic-based memory technologies, and could make it possible to create inexpensive, high-density universal memory-on-chip devices that require much less power than existing technologies. Compatible with integrated circuit manufacturing techniques, it could allow for inexpensive, high density universal memory-on-chip production.

According to the Hebrew University's Prof. Paltiel, "Now that proof-of-concept devices have been designed and tested, magnetless spin memory has the potential to become the basis of a whole new generation of faster, smaller and less expensive memory technologies."

The technology transfer companies of the Hebrew University (Yissum) and the Weizmann Institute of Science (Yeda) are working to promote the realization of this technology, by licensing its use and raising funds for further development and commercialization. With many possible applications, it has already attracted the attention of start-up funds.

The Hebrew University's Center of Nanoscience and Nanotechnology helped with device fabrication and advice. Prof. Paltiel acknowledges the Yessumit internal grant from the Hebrew University, and Ron Naaman and Shinto P. Mathew acknowledge the support of the Minerva Foundation.


Story Source:

The above story is based on materials provided by Hebrew University of Jerusalem. Note: Materials may be edited for content and length.


Journal Reference:

  1. Oren Ben Dor, Shira Yochelis, Shinto P. Mathew, Ron Naaman, Yossi Paltiel. A chiral-based magnetic memory device without a permanent magnet. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3256

Cite This Page:

Hebrew University of Jerusalem. "Small, fast and not so demanding: Breakthrough in memory technologies could bring faster computing, smaller memory devices and lower power consumption." ScienceDaily. ScienceDaily, 14 August 2013. <www.sciencedaily.com/releases/2013/08/130814100206.htm>.
Hebrew University of Jerusalem. (2013, August 14). Small, fast and not so demanding: Breakthrough in memory technologies could bring faster computing, smaller memory devices and lower power consumption. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2013/08/130814100206.htm
Hebrew University of Jerusalem. "Small, fast and not so demanding: Breakthrough in memory technologies could bring faster computing, smaller memory devices and lower power consumption." ScienceDaily. www.sciencedaily.com/releases/2013/08/130814100206.htm (accessed September 1, 2014).

Share This




More Computers & Math News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Apple's Rumored iWatch Could Cost $400

Apple's Rumored iWatch Could Cost $400

Newsy (Aug. 31, 2014) Apple is expected to charge a premium for its still-rumored wearable device. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
JPMorgan Chase Confirms Possible Cyber Attack

JPMorgan Chase Confirms Possible Cyber Attack

Reuters - US Online Video (Aug. 28, 2014) Attackers stole checking and savings account information and lots of other data from JPMorgan Chase, according to the New York Times. Other banks are believed to be victims as well. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Spend 2 Minutes Watching This Smartwatch Roundup

Spend 2 Minutes Watching This Smartwatch Roundup

Newsy (Aug. 28, 2014) LG announces a round-faced smartwatch, Samsung adds 3G connectivity to its latest wearable, and Apple will reportedly announce the iWatch on Sept. 9. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins