Featured Research

from universities, journals, and other organizations

Evolution of hyperswarming bacteria could develop anti-biofilm therapies

Date:
August 15, 2013
Source:
Cell Press
Summary:
Hyperswarming, pathogenic bacteria have repeatedly evolved in a lab, and the good news is that they should be less of a problem to us than their less mobile kin. That's because those hyperswarmers, adorned with multiple whipping flagella, are also much worse at sticking together on surfaces in hard-to-treat biofilms. They might even help us figure out a way to develop anti-biofilm therapies for use in people with cystic fibrosis or other conditions.

The evolution of hyperswarming, pathogenic bacteria might sound like the plot of a horror film, but such bugs really have repeatedly evolved in a lab, and the good news is that they should be less of a problem to us than their less mobile kin. That's because those hyperswarmers, adorned with multiple whipping flagella, are also much worse at sticking together on surfaces in hard-to-treat biofilms. They might even help us figure out a way to develop anti-biofilm therapies for use in people with cystic fibrosis or other conditions, say researchers who report their findings in Cell Reports, a Cell Press publication, on Aug. 15.
Credit: Cell Reports, van Ditmarsch et al.

The evolution of hyperswarming, pathogenic bacteria might sound like the plot of a horror film, but such bugs really have repeatedly evolved in a lab, and the good news is that they should be less of a problem to us than their less mobile kin. That's because those hyperswarmers, adorned with multiple whipping flagella, are also much worse at sticking together on surfaces in hard-to-treat biofilms. They might even help us figure out a way to develop anti-biofilm therapies for use in people with cystic fibrosis or other conditions, say researchers who report their findings in Cell Reports, a Cell Press publication, on August 15th.

The findings are also a textbook example of real-time experimental evolution. What's more, says Joao Xavier of Memorial Sloan Kettering Cancer Center, they are a "unique example of strikingly parallel molecular evolution."

In other words, the evolution that he and his team witnessed was repeatable, all the way down to the molecular level.

The researchers didn't set out with the goal to evolve hyperswarmers, but they did passage Pseudomonas aeruginosa on special plates over a period of days. On those plates, bacteria that could spread out had an advantage in harvesting nutrients from the surface, and within a matter of days, some of those bacteria started hyperswarming.

Investigation of the bacteria showed that P. aeruginosa gained its hyperswarming ability through a single point mutation in a flagellar synthesis regulator (FleN). As a result, the bacteria, which usually have one single flagellum, were locked into a multi-flagellated state. They became better at moving around to cover a surface, but much worse at forming densely packed, surface-attached biofilm communities. All told, the researchers saw this new ability independently arise 20 times.

"The fact that the molecular adaptations were the same in independent lineages suggests evolution may be, to some extent, predictable," says Xavier.

The findings may be very important because biofilms are a major problem in clinical settings. Infectious biofilms are hard to remove and difficult to kill with antibiotics. Drugs that target FleN or that otherwise make bacteria better at spreading out and worse at settling down could leave them more vulnerable to antibiotics and easier to get rid of.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dave van Ditmarsch, Kerry E. Boyle, Hassan Sakhtah, Jennifer E. Oyler, Carey D. Nadell, Éric Déziel, Lars E.P. Dietrich, Joao B. Xavier. Convergent Evolution of Hyperswarming Leads to Impaired Biofilm Formation in Pathogenic Bacteria. Cell Reports, 2013; DOI: 10.1016/j.celrep.2013.07.026

Cite This Page:

Cell Press. "Evolution of hyperswarming bacteria could develop anti-biofilm therapies." ScienceDaily. ScienceDaily, 15 August 2013. <www.sciencedaily.com/releases/2013/08/130815133449.htm>.
Cell Press. (2013, August 15). Evolution of hyperswarming bacteria could develop anti-biofilm therapies. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2013/08/130815133449.htm
Cell Press. "Evolution of hyperswarming bacteria could develop anti-biofilm therapies." ScienceDaily. www.sciencedaily.com/releases/2013/08/130815133449.htm (accessed September 19, 2014).

Share This



More Plants & Animals News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) — Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Chimp Violence Study Renews Debate On Why They Kill

Chimp Violence Study Renews Debate On Why They Kill

Newsy (Sep. 17, 2014) — The study weighs in on a debate over whether chimps are naturally violent or become that way due to human interference in the environment. Video provided by Newsy
Powered by NewsLook.com
Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) — The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) — Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins